H. Abedi. Development of Vortex Filament Method for Wind Power Aerodynamics. PhD thesis, Chalmers University of Technology, Gothenburg, Sweden, 2016.


S. Ananthan, J. G. Leishman, and M. Ramasamy. The role of filament stretching in the free-vortex modeling of rotor wakes. In 58th Annual Forum and Technology Display of the American Helicopter Society International. Montreal, Canada, 2002.


A. Bagai and J. G. Leishman. Flow visualization of compressible vortex structures using density gradient techniques. Experiments in Fluids, 15(6):431–442, 1993.


A. Bagai and J. G. Leishman. Rotor free-wake modeling using a pseudo-implicit technique including comparisons with experimental data. In 50th Annual Forum of the American Helicopter Society. Washington, D.C., 1994.


E. Branlard. Wind Turbine Aerodynamics and Vorticity-Based Methods: Fundamentals and Recent Applications. Springer International Publishing, 2017. ISBN 978-3-319-55163-0. doi:10.1007/978-3-319-55164-7.


E. Branlard, G. Papadakis, M. Gaunaa, G. Winckelmans, and T. J. Larsen. Aeroelastic large eddy simulations using vortex methods: unfrozen turbulent and sheared inflow. Journal of Physics: Conference Series (Online), 2015. doi:10.1088/1742-6596/625/1/012019.


S. Gupta. Development of a Time-Accurate Viscous Lagrangian Vortex Wake Model for Wind Turbine Applications. PhD thesis, Univeristy of Maryland, College Park, MD, 2006.


S. Gupta and J. G. Leishman. Free-vortex filament methods for the analysis of helicopter rotor wakes. Journal of Aircraft, 39(5):759–775, 2002.


M. O. L. Hansen. Aerodynamics of Wind Turbines. Earthscan, London; Sterling, VA, 2008.


J. Jonkman. The new modularization framework for the fast wind turbine cae tool. Technical report NREL/CP-5000-57228, National Renewable Energy Laboratory, 2013.


J. Kerwin. Lecture notes hydrofoil and propellers. Technical Report, M.I.T., 2000.


J. Leishman. Principles of Helicopter Aerodynamics. Cambridge Univ. Press, Cambridge, MA, 2006.


J. G. Leishman, M. J. Bhagwat, and A. Bagai. Free-vortex filament methods for the analysis of helicopter rotor wakes. Journal of Aircraft, 39(5):759–775, 2002.


G. Papadakis. Development of a hybrid compressible vortex particle method and application to external problems including helicopter flows. PhD thesis, National Technical University of Athens, 2014.


W. J. M. Rankine. Manual of Applied Mechanics. Griffen Co., London, 1858.


M. Ribera. Helicopter Flight Dynamics Simulation with a Time-Accurate Free-Vortex Wake Model. PhD thesis, University of Maryland, College Park, MD, 2007.


L. Rosenhead. The formation of vortices from a surface of discontinuity. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 134(823):170–192, 1931. URL: http://www.jstor.org/stable/95835.


M. P. Scully. Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads. PhD thesis, Massachusetts Institute of Technology, Cambridga, MA, 1975.


M. Sessarego, N. Ramos García, J. N. Sørensen, and W. Z. Shen. Development of an aeroelastic code based on three-dimensional viscous-inviscid method for wind turbine computations. Wind Energy, 20(7):1145–1170, 2017. doi:10.1002/we.2085.


Michael A. Sprague, Jason M. Jonkman, and Bonnie J. Jonkman. Fast modular framework for wind turbine simulation: new algorithms and numerical examples. Technical Report NREL/CP-2C00-63203, National Renewable Energy Laboratory, 2015.


A. van Garrel. Development of a wind turbine aerodynamics simulation module. Technical Report ECN-C–03-079, ECN, 2003.


G. H. Vatistas, V. Koezel, and W. C. Mih. A simpler model for concentrated vortices. Experiments in Fluids, 11(1):73–76, 1991.


S. G. Voutsinas. Vortex methods in aeronautics: how to make things work. International Journal of Computational Fluid Dynamics, 2006.


J. Weissinger. The lift distribution of swept-back wings. Technical report TM 1120, NACA, 1947.


G. S. Winckelmans and A. Leonard. Contributions to vortex particle methods for the computation of 3-dimensional incompressible unsteady flows. Journal Of Computational Physics, 109(2):247–273, 1993.