4.16.9. References

ff-Ain88

J. F. Ainslie. Calculating the flowfield in the wake of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 27:213–224, 1988. doi:https://doi.org/10.1016/0167-6105(88)90037-2.

ff-Ceal15

M. J. Churchfield and et al. A comparison of the dynamic wake meandering model, large-eddy simulations, and field data at the egmond aan zee offshore wind plant. In 33rd Wind Energy Symposium. Kissimmee, FL, 2015. AIAA. doi:http://dx.doi.org/10.2514/6.2015-0724.

ff-CN96

J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of partial differencial equations of the heat-conduction type. Advances in Computaional Mathematics, 6:207–226, 1996.

ff-Deal18

P. Doubrawa and et al. Optimization-based calibration of fast.farm parameters against sowfa. In 36th Wind Energy Symposium. Kissimmee, FL, January 2018. AIAA. doi:https://arc.aiaa.org/doi/pdf/10.2514/6.2018-0512.

ff-Geal16

P. M. O. Gebraad and et al. Wind plant power optimization through yaw control using a parametric model for wake effects – a cfd simulation study. Wind Energy, 19(1):95–114, 2016. doi:http://onlinelibrary.wiley.com/doi/10.1002/we.1822/epdf.

ff-Hao16

Y. Hao. Wind Farm Wake Modeling and Analysis of Wake Impacts in a Wind Farm. Phd thesis, University of Massachusetts, Amherst, Massachusetts, 2016.

ff-Heal14

Y. Hao and et al. Implementing the dynamic wake meandering model in the nwtc design codes. In 32nd Wind Energy Symposium. National Harbor, MD, January 2014. AIAA. doi:http://dx.doi.org/10.2514/6.2014-1089.

ff-Jon14

B. Jonkman. Turbsim user's guide v2.00.00. Technical Report NREL/TP-xxxx-xxxxx, National Renewable Energy Laboratory, Golden, CO, October 2014.

ff-Jon13

J. Jonkman. The new modularization framework for the fast wind turbine cae tool. In 51st AIAA Aerospace Sciences Meeting. Dallas, TX, 2013. AIAA.

ff-Jeal09

J. Jonkman and et al. Definition of a 5-mw reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, February 2009.

ff-Katiceal86

I. Kati\`c and et al. A simple model for cluster efficiency. In European Wind Energy Association Conference and Exhibition. Rome, Italy, 1986.

ff-Keal13

R.-E. Keck and et al. A Consistent Turbulence Formulation for the Dynamic Wake Meandering Model in the Atmospheric Boundary Layer. Phd thesis, DTU, Denmark, 2013.

ff-Leal08

G. C. Larsen and et al. Wake meander: a pragmatic approach. Wind Energy, 11:337–95, 2008. doi:http://onlinelibrary.wiley.com/doi/10.1002/we.267/epdf.

ff-Meal10

H. A. Madsen and et al. Calibration and validation of the dynamic wake meandering model for implementation in an aeroelastic code. Journal of Solar Energy Engineering, November 2010. doi:https://doi.org/10.1115/1.4002555.

ff-Meal16

H. A. Madsen and et al. Wake flow characteristics at high wind speed. In 34th Wind Energy Symposium. San Diego, CA, 2016. AIAA. doi:http://dx.doi.org/10.2514/6.2016-1522.

ff-MT21

L. A. Martinez-Tossas. Wind turbine wakes: high-thrust coefficient. Wind Energy, 2021. Publication pending.

ff-Seal19a

K. Shaler and et al. Effects of inflow spatiotemporal discretization on wake meandering and turbine structural response using fast.farm. Journal of Physics: Conference Series, May 2019. doi:10.1088/1742-6596/1256/1/012023.

ff-Seal19b

K. Shaler and et al. Fast.farm response of varying wind inflow techniques. In 37th Wind Energy Symposium. San Diego, CA, 2019. AIAA. doi:https://arc.aiaa.org/doi/pdf/10.2514/6.2019-2086.

ff-Smi06

S. W. Smith. The Scientist and Engineer's Guide to Digital Signal Processing. Californial Technical Publishing, 2006. ISBN 978-0966017632.

ff-Seal14

M. A. Sprague and et al. Fast modular wind turbine cae tool: nonmatching spatial and temporal meshes. In 50th AIAA Aerospace Sciences Meeting. National Harbor, MD, January 2014. AIAA. doi:http://arc.aiaa.org/doi/pdf/10.2514/6.2014-0520.

ff-Seal15

M. A. Sprague and et al. Fast modular framework for wind turbine simulation: new algorithms and numerical examples. In 51th AIAA Aerospace Sciences Meeting. Kissimmee, FL, 2015. AIAA. doi:http://arc.aiaa.org/doi/pdf/10.2514/6.2014-0520.

ff-Tho49

L. H. Thomas. Elliptic problems in linear difference equations over a network. Technical Report, Watson Science Computer Laboratory, New York, NY, 1949.