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Introduction

This document describes the implementation of a new dynamic stall model in OpenFAST and a
variation of the dynamic wake model (DBEMT). Both implementations use a state-space formu-
lation, which allows for the linearization of the model. Currently, steady state aerodynamics are
used during the linearization of the OpenFAST model due to the difficulty in linearizing the cur-
rent models. Unsteady aerodynamic effects such as the dynamic stall and dynamic wake effects are
thus not accounted for in the linearization, leading to errors in the estimates of the frequencies,
damping and stability of the system. The models presented in this document can be used both for
linearization and time domain analyses, leading to consistent results between the two approaches.

The new dynamic stall model is directly based on the work of Hansen et al. [1] (further referred
to as the HGM-model) which in turn is based on the work of Beddoes and Leishman [2] (BL-
model). The HGM model may be seen as a simplified version of the BL model, but, with an
additional account for the pitching motion of the airfoil. The HGM model requires a subsets of
the inputs of the BL-model, which is currently implemented in OpenFAST . Oye’s dynamic stall
model may also be implemented since it can be seen as a straightforward simplification of the HGM
model, with one state instead of four.

The new dynamic wake model is a variation of the current DBEMT model, which is attributed
to the work of Øye. The current implementation uses finite differences between two discrete time
steps. Simplifying assumptions are introduced in the new model to allow for a continuous state-
space formulation.

The main corpus of the document presents the implementation steps for the new models, start-
ing from a high level view and progressively focusing on the specific programming aspects. The
appendix of the document provides some background on the various topics touched upon in this
document and additional levels of details. Most notations have been kept consistent with the
developments from Hansen et al. [1].
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Conventions

Initialisms, acronyms, abbreviations

• 34: “three-quarter” chord point (see further description below)
• ac: aerodynamic center
• AD: AeroDyn
• BEM/BEMT: blade element momentum theory
• CCSD: Calculate continuous state derivative
• DB/DBEMT: dynamic BEM theory (dynamic inflow/wake)
• CDBEMT: continuous state formulation of the DBEMT
• dyn: dynamic (airfoil coefficients)
• inv: inviscid (airfoil coefficients)
• fs: fully-separated (airfoil coefficients)
• op: operating point
• qs: quasi-steady
• HGM: Hansen Gaunaa Madsen model, see [1]
• st: steady (airfoil coefficients)
• UA: unsteady aerodynamics (dynamic stall)
• CUA: unsteady aerodynamics module using a continuous states (new module)

Notations

A list of the main notations used in this document is given below. Figure 1 may be used to follow
the notations.

• Aerodynamic Center (AC): point of the airfoil cross section where the aerodynamic forces
and moment are assumed to act. Usually close to the 1/4 chord point for a regular airfoil
and at the center for a circular cross section
• “3/4” chord point: in the original formulation this point refers to the point on the chord

axis located 3/4 chord behind the leading edge. This concept is here generalized to the
point located mid-way between the aerodynamic center and the trailing edge, to account for
aerodynamic center positions that differ strongly from a 1/4 chord point1. The notation 3/4
is yet kept in this document.
• d34: distance (positive) between the aerodynamic center and the 3/4 chord point (close to
c/2 for a regular airfoil).

• vac: velocity vector at the aerodynamic center vac
4
= [vx,ac, vy,ac] (coordinates assumed to be

expressed in the airfoil section coordinate system)

• v34: velocity vector at the 3/4 chord point v34
4
= [vx,34, vy,34](coordinates assumed to be

expressed in the airfoil section coordinate system)
• ω: rotational speed of the airfoil section (pitching/torsional rate)

• Uac: velocity norm at the aerodynamic center. Uac
4
= ‖vac‖ =

√
v2
x,ac + v2

y,ac

1These positions are currently not available in OpenFAST, and as a first approximation, the “3/4” point may
be placed at a distance c/2 behind the aerodynamic center. A more permanent change would be to provide the
relative position of the aerodynamic center with respect to the chord line in the AeroDyn blade input file. With this
information, different relevant positions may be obtained: trailing edge, leading edge, 3/4 chord, etc.
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• αac: angle of attack at the aerodynamic center αac
4
= atan2(vx,ac, vy,ac)

• α34: angle of attack at the 3/4 chord point α34
4
= atan2(vx,34, vy,34)

• f : vector of airfoil section loads: f
4
= [fx, fy,mz] (coordinates assumed to be expressed in

the airfoil section coordinate system), units: (N/m,N/m,N)

• C: vector of airfoil aerodynamic lift, drag and moment coefficients C
4
= [Cl, Cd, Cm]

v

xs

ys

l

d

Chord axis

α

vy

vx

fx

fy

3/4
ac

mz
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t

n

Figure 1: OpenFAST coordinate system for a blade cross section

Notations specific to the dynamic inflow module:

• xDB: the vector of states used by the dynamic BEM (dynamic inflow) module
• Wqs: the vector of quasi-steady induced velocities

Notations specific to the dynamic stall module:

• xUA: the vector of states (4 states per section) used by the unsteady aerodynamic (dynamic
stall) module
• c, Cl,α, α0 are constant airfoil parameters: chord, lift slope and angle of attack of zero lift
• fst(α) is the separation function, determined from the lift curve CL(α) and which definition

is given in subsection C.2
• A1, A2, b1, b2 are four constants, parameters of the HGM model, characteristic of the propa-

gation of the wake vorticity for this airfoil
• Tf , Tp are two positive time constants, parameters of the HGM model, characteristic of the

propagation time of the wake vorticity for this airfoil
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1 Overview

1.1 Problem statement and approach

Linearization of the aerodynamics is not possible in AeroDyn since OpenFAST mostly supports
linearization with continuous states, inputs and constraints, while currently:

• UA: uses discrete states.
• DBEMT: uses discrete inputs (and finite differences)

The following approach is followed to solve these issues:

• A new UA module is implemented (called CUA), which uses continuous states. This formula-
tion is based on the model by Hansen et al. [1] (referred to as HGM model). The new module
requires the structural rotational speed of each airfoil section ω.
• A variation of the DBEMT module is introduced (called CDBEMT), which only uses contin-

uous values. This variations requires an estimation of the time derivative of the quasi-steady
induced velocities. This time derivative is estimated based on the structural acceleration of
each airfoil sections.

To support combinations of old and new modules the following features are required:

• CUA and CDBEMT need time integration routines (e.g. RK4, ABM4) to integrate the states
independently of BEMT. Both modules involve a state equation of the form ẋ = X(x,u, t),
which is implemented as a routine called CalcContinuousStateDerivative (CCSD).
• Similarly, BEMT needs to have a CCSD routine and time integration routines. These routines

are only used when both the new models are selected. For convenience, a routine called
BEMT UpdateStates CCSD is added, and the responsibility to call this routine or the old
routine (BEMT UpdateStates) is given to AeroDyn.

The BEMT module is expressed using a constraint equation, and the constraint is tightly coupled
to the UA and DBEMT modules. To ease the implementation of the BEMT CCSD routine, the
constraint is solved for at the beginning of the routine, effectively removing the constraint from the
state equation inputs (i.e. X(x,u, z, t) = X(x,u, z|Z(x,u,z,t)=0 , t)). A similar approach is used for
the CalcOutput routine. The linearization is then performed at the AeroDyn level by perturbing
the states and inputs given as arguments of the BEMT CCSD and CalcOutput routines. The
amplitude of the perturbations need to be carefully selected as to be sufficiently large compared to
the error associated with the resolution of the constraint.

1.2 Implementation overview

The following preliminary steps are needed:

• Implementation of the CUA module based on the HGM model. The implementation of this
module is described in section 2, with the changes required to AeroDyn/BEMT presented in
subsection 2.8. The model takes as inputs the relative velocity of the airfoil at the lifting line,
and the pitching rate of the section, and outputs the unsteady airfoil coefficients. The main
changes to AeroDyn/BEMT consist in: 1) adding the CUA module variables to the BEMT
registry; 2) introducing conditional statements to switch between the UA and CUA module
based on the input parameter UAMod; 3) providing the pitching rate of the airfoil sections to
the CUA module.

6



• Update of DBEMT to include the continuous state option (CDBEMT). The implementation
is detailed in section 3. The continuous states of the module are the induced velocities and
accelerations. The module requires as input the quasi-steady induced accelerations. This
information is approximated based on the structural acceleration of the blade sections, which
need to be passed to AeroDyn and BEMT.

• Both modules may then be tested and compared to UA and DBEMT respectively.

The following steps are needed to allow for the linearization:

• Implementation of BEMT UpdateStates CCSD (see section 4). The integration is performed
using “generic” time integration scheme routines (e.g. RK4, ABM4) and a CCSD routine
which solve the BEMT constraint equation and call the CCSD of CUA and CDEMBT. The
changes to AeroDyn are given in subsection 4.2, and simply consists of a switch between
BEMT UpdateStates CCSD (if both continuous submodules are used) and BEMT UpdateStates

(otherwise).

• Implementation of the linearization routines in AeroDyn (see section 5). The linearization
of the state and outputs is performed using finite differences. The method is similar to the
one already implemented in AeroDyn (to linearize the constraints). Each state and input is
perturbed and the corresponding partial derivative computed.
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2 Implementation of the CUA module

A new submodule, named CUA, is added in AeroDyn15. This module is used when UAMod=4. This
section provides an overview of the module and its differences with the model from Hansen et al.[1].
Then, the various components of the modules are described in successive sections: registry types,
initialization, update of states, output calculation, and linearization.

2.1 Relation to the original module by Hansen et al.

The original model from Hansen et al. is described in Appendix E and in [1]. The current imple-
mentation differs from this model on different points. Figure 2 is used to illustrate the differences.
Block 0 refer to the dynamics stall model of Hansen et al., block 1 is an intermediate block which
is kept to ease future extension of the model, and block 2 is the interface of the dynamic stall
module to be implemented. Using the notations introduced in section , the main differences from

Block 0: model from
Hansen et al.

X̃(x, αac, α34, Uac, ω)

C̃(x, αac, α34, Uac, ω)

αac
α34

Uac
ω C̃

Block 1: uses velocities as input X(x,vac,v34, ω)

C(x,vac,v34, ω)

Block 2: assumes relationship between ac and 3/4 velocities X(x,vac, ω)

C

vac
v34

ω

vac
ω C

= =
atan
‖ ‖

v34 ≈ vac
−ωc

2 ex

Y = C(x,vac, ω)

U̇ac

Figure 2: Inputs and outputs for different “blocks”, where block 0 is the model from Hansen et
al. [1], and block 2 represents the OpenFAST dynamics stall module.

the original model and the distinctions between the different blocks are as follows:

• The acceleration term U̇ac is neglected in block 0, a choice justified in subsection G.1.

• Block 1 takes as input the velocity vectors at the aerodynamic center and the quarter chord
(vac, and v34). These are converted to angles of attacks and velocity norms before interacting
with block 0.

• Block 2 takes as input the velocity at the aerodynamic center and derives a velocity at the
“three-quarter” chord using the pitching rate ω2:

v34 = vac + ω × rac→34 ≈ vac − ωd34ex (1)

2This assumption amounts to neglecting the aerodynamic changes of the induced velocities (and turbulence inflow)
along the chord. For a BEM calculation, this assumptions makes sense. A vortex code may only report the velocity at
the lifting line or at the “3/4” point. Notations for block 1 are kept in this document if in the future this assumption
is to be dropped.
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where d34 is the distance between the aerodynamic point and the 3/4 point.

• Block 0 and block 1 return the airfoil coefficients C = [Cl, Cd, Cm].

To ease the linearization, different notations are introduced to distinguish between the different
blocks. Different accents are added to the main functions of the blocks: the state function X, the
airfoil coefficient output C and the main output Y . These functions return the same values but
are function of different inputs:

X(x,vac, ω)
4
= X(x,vac,v34, ω) ≡ X̃(x, αac, α34, Uac, ω) (2)

Y (x,vac, ω)
4
= C(x,vac, ω) ≡ C(x,vac,v34, ω) ≡ C̃(x, αac, α34, Uac, ω) (3)

(4)

The distinction is only relevant for the linearization of the module.

2.2 Registry types

The variables and registry types of the module are given in Table 1. The main parameters are
the airfoil parameters (polar data), and the same unsteady parameters as the ones defined for the
Beddoes-Leishman model:

• A1, A2, b1, b2 are the four constants found in the profile input file of AeroDyn.
• Tf , Tp are the two constants also found in this profile file, and noted T f0 and T p.

Different “misc” variables are used. These are temporary variables of the dynamic stall model,
entirely determined by the states and the parameters. All the other variables should follow from
the notations presented in section .
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Table 1: Variables involved in the state space representation of the module

Symbol Variable Dim. Description Unit

InitInputType

c c - Chord length at node m
dt dt - Time step used in numerical integration schemes s
AFI AFI - Airfoil parameters: Cl, Cd, Cm, Cl,α, Ai, bi, BL p:, T f0, T p0 -

NumOuts - The number of outputs for this module as requested in the input file -

x ContinuousStateType

x x 4 States rad

u InputType

vac v ac 2 Relative fluid velocity at the aerodynamics center m/s
ω omega - Pitching/twisting rate of the airfoil section rad/s

p ParameterType

c c - Chord length m
dt dt - Time step used in numerical integration schemes s
AFI AFI - Airfoil parameters: Cl, Cd, Cm, Cl,α, Ai, bi, BL p:, T f0, T p0 -

y OutputType

C Cl, Cd, Cm 3 Airfoil coefficients [Cl,dyn, Cd,dyn, Cm,dyn] -
WriteOutput : Outputs to be written to file -
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2.3 Helper functions

The dynamics stall module requires the evaluation of several functions which use interpolation
based on discrete data (e.g. the polar data). These functions are described in this section and
the best location to place them would appear to be the AirfoilInfo module. To speed up the
execution of the repetitive evaluations of these functions, pre-computed interpolation weights may
be used.

Static airfoil data The Cl, Cd, and Cm curves are already computed in OpenFAST using pre-
computed interpolation weights. It appears that the routines ComputeSteadyAirfoilCoefs from
BEMTUncoupled and GetSteadyOutputs from UnsteadyAero are very similar and it may be consid-
ered to merge them together (differences related to Cd,0 and Re). These functions may be merged
and moved to the AirfoilInfo module.

Separation function The separation function fsts (α) described in subsection C.2 is similar from
the one defined in the module UnsteadyAero via the functions Get f from Lookup or Get f from Coeffs

depending on the variables FLookup3. In the current implementation, this function is defined using
the lift coefficient and not the normal coefficient. The definition from Equation 60 is to be imple-
mented. Care is required in the implementation of this function, as discussed in subsection C.2. A
python source code to compute fsts is given in subsection F.1. Spline coefficients may be fitted to
this function to speed up its evaluation.

Fully separated polar Once the separation function is known, the fully separated polar is de-
fined using Equation 62. Spline coefficients may be fitted to this function to speed up its evaluation.

Derivatives of the polar functions For the linearization, the derivates of the polar functions
with respect to α need to be evaluated. The derivative of the cubic splines can be used to create

spline functions of the polar function derivatives. Alternatively,
dCstl
dα ,

dCstd
dα , and dCstm

dα need to be
obtained by finite differences, while the derivative of the separation function may be obtained as

if (Cl,α 6= 0 and α 6= α0), or Cstl 6= 0,
df sts
dα

=
2

Cl,α(α− α0)

[
dCstl
dα
−
Cstl (α)

α− α0

][
2−

√
Cl,α(α− α0)

Cstl (α)

]

else,
df sts
dα

= 0

If fsts 6= 1, the derivative of the fully separated function is:

dCfsl
dα

=
1

(1− fsts (α)2)

[(
dCstl
dα

(α)− Cl,αfsts (α)

)(
1− fsts (α)

)
+
(
Cstl (α)− Cl,α(α− α0)

) df sts
dα

(α)

]

and
dCfsl
dα = 1

2
dCstl
dα otherwise. In the work of Hansen et al.[1, p.19] different recommendations are

given if these functions are directly implemented.

3In this implementation, we suggest to use the lookup option, though it has been argued that a fit to a parametric
function may be better suited given the uncertainty of the polar data, in particular in the stall region [3].
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2.4 Initialization routine

The initialization routine performs the following steps:

• Initialize the chord, and time step based on inputs

• Stores a pointer to the airfoil information of the current section

• Initialize the four states x = [x1, x2, x3, x4] to 0.

• (Optional) Pre-compute the weights for the polar functions Cl, Cd, Cm, fst and Cl,fs (see
subsection 2.3)

2.5 Update state routine

This routine integrates the states in time, calling the different time integration subroutines based
on the integration scheme (RK4, AB4..). The core of all the time integration routines is the function
CalcContStateDeriv which is described here. This function is only implemented for the case
U > 0. The routine should abort if this is not the case, until an alternative formulation for this
special case is found. This function computes ẋ using the right hand side of the equations 71-74.
These equations are repeated below:

ẋ1 = −T−1
u b1 x1 + T−1

u b1A1α34

ẋ2 = −T−1
u b2 x2 + T−1

u b2A2α34

ẋ3 = −T−1
p x3 + T−1

p CpL

ẋ4 = −T−1
f x4 + T−1

f f sts (αF ), x4 ∈ [0, 1]

with:

Tu(t)
4
=

1

2
min

(
c

Uac(t)
, 100

)
αE(t)

4
= α34(t)(1−A1 −A2) + x1(t) + x2(t)

CpL(t)
4
= Cl,α (αE(t)− α0) + πTu(t)ω(t)

αF (t)
4
=
x3(t)

Cl,α
+ α0

If Uac = 0, then T−1
u = 0, but other terms involving Tu are ill-defined. A limit was thus added

to the definition of Tu so that it represents a large but finite time scale of 25s4. The validity of
the dynamic stall model for low wind speed relative to the chord is yet questionable. Since the
variable x4 is effectively a separation parameter, the routine needs to ensure that this variables
stays within the range [0; 1]. The airfoil parameters α0 and Cl,α are found in the parameters, the
functions Cl, Cd, Cm, fst and Cl,fs are functions based of the airfoil info parameter. A python code
implementing this is given in subsection F.2).

4The value was set based on engineering judgment, the limit correspond for instance to a chord of 10m and a wind
speed of 0.1m/s.
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2.6 Output calculation routine

The function CalcOutput computes the unsteady airfoil coefficient, C. The dynamic airfoil coeffi-
cients Cl,dyn, Cd,dyn, Cm,dyn are obtained from the states as follows (see Appendix E or [1]):

Cl,dyn(t) = x4(αE − α0)Cl,α + (1− x4)Cl,fs(αE) + πTuω (5)

Cd,dyn(t) = Cd(αE) + (αac − αE)Cl,dyn + [Cd(αE)− Cd(α0)] ∆C ′′d,f (6)

Cm,dyn(t) = Cm(αE)− π

2
Tuω (7)

with

∆C ′′d,f =

√
fst(αE)−√x4

2
− f st(αE)− x4

4
, x4 ≥ 0 (8)

The variables Tu and αE are recomputed within the routine based on equations 71-74. The airfoil
parameters α0 and Cl,α are found in the parameters, the functions Cl, Cd, Cm, fst and Cl,fs are
functions based of the airfoil info parameter. An example of python source code for the output
calculation is given in Appendix F.

2.7 Jacobians

NOTE: Jacobians do not need to be implemented. The linearization will be computed using finite
differences at the aerodyn level.

This section provides the Jacobian of the state and output functions with respects to the inputs
and states. Due to the change of variables involved between the different blocks (see Figure 2), some
chain rules have to be applied between the functions and inputs of each block, requiring several
intermediate variables to be defined. This approach is here chosen to help future extension of the
code and ease the highlighting of potential errors in the derivations. To limit the number of steps
though, the Jacobians of Block 1 are skipped and the link between block 2 and 0 is made directly.

The linearization is assumed to be performed about the operating point (xop,vac,op, ωop), from
which the following variables are directly derived by definitions Uac,op, v34,op, αop. The angle of
attacks at the aerodynamic center and the 3/4 chord are linearized about the same angle of attack,
noted, αop. Based on these operating point values, the following variables are defined

Tu,op
4
=

c

2Uac,op
, Ti

4
=
Tu,op

bi
, fop

4
= fsts (αop) (9)

Cl,op
4
= Cstl (αop), Cd,op

4
= Cstd (αop), Cm,op

4
= Cstm(αop) (10)

Note: the code should check that the constants bi are positive. The following variables are also
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introduced (for the Jacobian of the outputs only):

cl,f
4
= Cl,α(αop − α0)− Cl,op (11)

cl,α
4
= Cl,αfop +

dCstl
dα

∣∣∣∣
αop

(1− fop) (12)

cd,f
4
= (Cd,0 − Cd,op)

1−
√
fop

4
√
fop

if fop 6= 0, else cd,f = 0 (13)

cd,α
4
=
dCstd
dα

∣∣∣∣
αop

− df sts
dα

∣∣∣∣
αop

cd,f (14)

cm,α
4
=
dCstm
dα

∣∣∣∣
αop

(15)

”Block 0” jacobians For “block 0” (see Figure 2), the jacobians of the state function X̃ and
output function C̃ are adapted from the report from Hansen et al.[1] as 5:

∂X̃

∂x
=


−T−1

1 0 0 0

0 −T−1
2 0 0

T−1
p Cl,α T−1

p Cl,α −T−1
p 0

0 0 T−1
f

dfsts
dα

∣∣∣
αop

C−1
l,α −T−1

f

 ,
∂X̃

∂Uac
= 0 (16)

∂X̃

∂α34
=


T−1

1 A1

T−1
2 A2

T−1
p Cl,α(1−A1 −A2)

0

 ,
∂X̃

∂ω
=


0
0

πT−1
p Tu,op

0

 ,
∂X̃

∂αac
= 0 (17)

∂C̃

∂x
=

 cl,α cl,α 0 cl,f
cd,α − Cl,op cd,α − Cl,op 0 cd,f

cm,α cm,α 0 0

 ,
∂C̃

∂α34
= (1−A1 −A2)

 cl,α
cd,α − Cl,op

cm,α

 (18)

∂C̃

∂αac
=

 0
Cl,op

0

 ,
∂C̃

∂ω
=

 πTu,op

0
−π

2Tu,op

 ,
∂C̃

∂Uac
= 0 (19)

Jacobians to relate Block 0 and Block 2 The jacobians involving the quantities at the
aerodynamic center are obtained from the following definitions at the aerodynamic center:

αac = atan2
vx,ac
vy,ac

, Uac =
√
v2
x,ac + v2

y,ac (20)

and similarly, using Equation 1, vx,34 = vx,ac − ωd34, and vy,34 = vy,ac, at the 3/4-chord point:

α34 = atan2
vx,34

vy,34
= atan2

vx,ac − ωd34

vy,ac
, U34 =

√
v2
x,34 + v2

y,34 =
√

(vx,ac + ωd34)2 + v2
y,ac (21)

5Some partial derivatives with respect to Uac are taken as 0 in the equations below. This follows the HawcStab2
implementation, but sources of error are still being investigated. The following terms are zero: ∂x1

∂Uac
= ∂x2

∂Uac
= 0, but

∂x3
∂Uac

may not be. A confusion on the definitions of the Ti variables is also possible, in which these variables would
be constants and not functions of Uac. More work is required to solve these issues.
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The following partial derivatives follow:

∂αac
∂vac

=

[
vy,ac
U2
ac

−vx,ac
U2
ac

]
,

∂Uac
∂vac

=
[vx,ac
Uac

vy,ac
Uac

]
(22)

∂α34

∂vac
=

[
vy,ac
U2

34

−vx,ac + ωd34

U2
34

]
(23)

∂α34

∂ω
= − c

2

vy,ac
U2

34

,
∂αac
∂ω

=
∂Uac
∂ω

= 0 (24)

”Block 2” jacobians The jacobians of X̂(x,vac, ω) and Ĉ(x,vac, ω), are expressed as functions
of the ones of Block 0 (i.e. the ones of X̃(x, αac, α34, ω) and C̃(x, αac, α34, ω)), using the chain rule
and the relationships developed above between the velocities, angle of attacks and pitching rate.

∂X̂

∂x
=
∂X̃

∂x
(25)

∂Ĉ

∂x
=
∂C̃

∂x
(26)

∂X̂

∂vac
=

∂X̃

∂αac

∂αac
∂vac

+
∂X̃

∂α34

∂α34

∂vac
(27)

∂Ĉ

∂vac
=

∂C̃

∂αac

∂αac
∂vac

+
∂C̃

∂α34

∂α34

∂vac
(28)

∂X̂

∂ω
=

∂X̃

∂α34

∂α34

∂ω
+
∂X̃

∂ω
(29)

∂Ĉ

∂ω
=

∂C̃

∂α34

∂α34

∂ω
+
∂C̃

∂ω
(30)

Final outputs jacobians The final output of the module are the sectional loads Y = f = MC,
where M = M(vac) is defined in Appendix H. The jacobians of the outputs are:

∂Y

∂x
= Mop

∂Ĉ

∂x

∣∣∣∣∣
op

(31)

∂Y

∂vac
=

∂M

∂vac

∣∣∣∣
op

Cop + Mop
∂Ĉ

∂vac

∣∣∣∣∣
op

(32)

∂Y

∂ω
= Mop

∂Ĉ

∂ω

∣∣∣∣∣
op

(33)
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where Equation 88 and Equation 93 provide:

∂M

∂vx,ac

∣∣∣∣
op

Cop =
1

2
ρc

 vx,ac
Uac

(vx,acCl + Uacvy,acCd) + UacCl
vx,ac
Uac

(−vy,acCl + Uacvx,acCd) + UacCd
2vx,ac cCm


op

(34)

∂M

∂vy,ac

∣∣∣∣
op

Cop =
1

2
ρc

 vy,ac
Uac

(vx,acCl + Uacvy,acCd) + UacCd
vy,ac
Uac

(−vy,acCl + Uacvx,acCd)− UacCl
2vy,ac cCm


op

(35)

Mop =
1

2
ρcU2

ac,op

 cosαop sinαop 0
− sinαop cosαop 0

0 0 c

 (36)

2.8 Integration of the CUA module into AeroDyn/DBEMT

The main changes to AeroDyn/BEMT to integrate to CUA module are:

• Adding the CUA module variables to the BEMT registry: misc, parameters and continuous
states are added.

• Introduce conditional statements to switch between the UA and CUA module based on the
input parameter UAMod. Such switches are introduced around all the calls to the *UA *

routines. The check for UA flag can be kept common between UA and CUA. For ease of
implementation, BEMT UpdateStates may be split into several subroutines, each performing
a dedicated task: computing the quasi-steady bem inductions, updating UA/UAC, and up-
dating DBEMT. This will require the repetition of the loops over blades and sections, and
will require the storage of some intermediate variables that are currently scalar variables
computed at a given section and blade position (e.g. phitmp). Such split will ease the call to
UAC UpdateStates, if this module is implemented such that it computes all sections at once.
The split will also help the implementation of BEMT CCSD (see section 4).

• Provide the pitching rate of each airfoil sections to the CUA module. This information needs
to be passed as input to the CUA module. The pitching rate variable is available in the
AeroDyn input mesh and can be passed as BEMT inputs, or as CUA inputs directly, within
the SetInputsForBEMT routine. Passing the variables from AeroDyn to CUA directly avoids
adding an additional input to the BEMT registry.
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3 Implementation of CDBEMT

3.1 Introduction

The main theory of the dynamic inflow model is provided in Appendix B together with a description
of the current and new implementations. The state equation of CDBEMT is:[

Ẇ

Ẅ

]
=

[
0 I2

− 1
τ1τ2

I2 − 1
τ1τ2

(τ1 + τ2)I2

] [
W

Ẇ

]
+

1

τ1τ2

[
0 0
1 kτ1

] [
W qs

Ẇ qs

]
(37)

where the state vector is x = [W ; Ẇ ] (here, W corresponds to the variable x%vind in the code),
and the input vector is u = [W qs; Ẇ qs] (where W qs corresponds to the variable u%vind s in the
code). The outputs are y = W . The module variant may be activated with the input option
DBEMT Mod=3 6. A scheme of the main routines and variables of the submodule DBEMT is shown
in Figure 3.

DBEMT_UpdateStatesuDB(t):       Wqs, Ū,  āqs 

uDB(t+dt): Wqs,2

xDB(t): W, Wint 

 xDB(t+dt)

DBEMT_Mod 1/2: Finite differences

DBEMT_Mod 3: State form (CDBEMT)
               (CalcContStateDeriv)

uDB(t): Wqs, Ū,  āqs, Ẇqs

xDB(t): W 

DBEMT_CalcOutput

uDB(t): Wqs

yDB(t): W 

yDB(t): Wqs

xDB(t): W, Ẇ

if initialized

else

Figure 3: Scheme of DBEMT. The option DBEMT Mod=3 is added

3.2 Changes to DBEMT

The following changes are required for the DBEMT module:

• Add the states and inputs to the registry (the time derivatives Ẇ and Ẇ qs)

• Implement a CCSD that returns the RHS of Equation 37

• Implement time-integration scheme routines (e.g. RK4, ABM4), to be used by the UpdateStates
routine

• At init, the states are initialized to zero (unless the module callee can provide a guess). On
the first call to update states, the inputs may be used to initialize the states (i.e. W = W qs

and Ẇ = Ẇ qs).

6In this variant it is assumed that τ1 is constant. A variant DBEMT Mod=4 may be introduced with a varying τ1.
This would require adding τ1 and τ̇1 to the states. This approach is currently not described.
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• Introduce switches in the code between the new and old methods based on DBEMT Mod.

3.3 Integration of CDBEMT into BEMT

The inputs to DBEMT are set in the routine calculate Inductions from DBEMT. The quasi steady
induction is currently set as:

W qs = −aqsVxex + a′qsVyey (38)

where Vx and Vy are the component of the relative wind without the wake inductions, V = V wind−
V elast, expressed in the section coordinates without pitch and sweep but with prebend, referred to
as the no-sweep-pitch-twist coordinate system7. The time derivative of Equation 38 is:

Ẇ qs = [−ȧqsVx − aqsV̇x − ωza′qsVy]ex + [ȧ′qsVy + a′qsV̇y − ωzaqsVx]ey (39)

where ωz is the rotation of the no-sweep-pitch-twist coordinate system around z. The relative
acceleration, V̇ , is approximated by neglecting the time change of the wind speed:

V̇ = V̇ wind − V̇ elast ≈ −V̇ elast (40)

The time rate of the axial and tangential inductions are also neglected, i.e. ȧqs ≈ 0 and ȧ′qs ≈ 0.
With these assumptions, Equation 39 reduces to8:

Ẇ qs ≈ [aqsV̇x,elast − ωza′qsVy]ex + [−a′qsV̇y,elast − ωzaqsVx]ey (41)

The above equation is implemented in calculate Inductions from DBEMT, to provide inputs to
the DBEMT module.

7In the future this may be replaced by the relative wind normal and tangential to the rotor plane
8The impact of these assumptions should be evaluated in future work.
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4 Implementation of BEMT CCSD

The implementation of the BEMT CCSD routine is described in this section. This routine is used
both for time domain simulations and linearizations.

4.1 Implementation changes

The following steps are required:

• Implement a CCSD routine. The structure of this routine strongly follows the logic of the
existing routine DBEMT UpdateStates. The structure is illustrated in Figure 4.
• Implement time-integration scheme routines (e.g. RK4, ABM4)
• Add a routine called BEMT UpdateStates CCSD to use the above. This routine follows the

framework and accepts several inputs at different times. The structure is illustrated in Fig-
ure 5.

Calculate_Inductions_from_BEMT
aqs, a'qs

ϕ

u: r, Vx,Vy, θp

BEMT_CCSD

uBT:   r, Vx,Vy, θp, χ0, Ū, ψ  

BEMT_UnCoupledSolve
ϕ u: r, Vx,Vy, θp

adyn, a'dyn
DBEMT_CalcOutput

ApplySkewedWakeCorrection a, a', χ
u: r, Vx,Vy, ψ, χ0

adyn, a'dyn

UA_CCSD
uUA:  Vac, ω 
xUA

xBT:  xDB,  xUA   
DBEMT_CCSD

p:  c, B, ν, AF

a, a'

u:UA:   α ,Vrel, Vac 

adyn, a'dyn =  aqs, a'qs

ẋBT :  ẋDB, ẋUA

 ẋDB 

ẋUA 

u: Vx,Vy SetInputs_For_UA

aqs, a'qs

uDB: Wqs, Ẇqs, āqsu: Ū, r, Vx,Vy, θp,
SetInputs_For_DBEMT

if DBEMT

if DBEMT

else

uDB

xDB

ω, Velast 

Velast 

uDB

xDB

Figure 4: Structure of the BEMT CCSD routine, called by BEMT UpdateStates CCSD.
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BEMT_UpdateStates_CCSD

uBT:   r, Vx,Vy, θp, χ0, Ū, ψ  

xBT:  xDB,  xUA   

p:  c, B, ν, AF

ẋBT :  ẋDB, ẋUA

ω, Velast 

BEMT_CCSD

uBT(:):   r, Vx,Vy, θp, χ0, Ū, ψ  

xBT:  xDB,  xUA   

p:  c, B, ν, AF

BEMT_TimeIntegrationScheme

States at t+dt:

xBT:  xDB,  xUA   

ω, Velast 

Figure 5: Structure of the BEMT UpdateStates CCSD routine

4.2 Integration of BEMT into AeroDyn

The changes needed to AeroDyn are the following:

• Provide the additional inputs to BEMT within the routine SetInputs: ω the rotational
velocity of each airfoil section, and V̇ elast the structural acceleration of each section
• The routine AD UpdateStates is rearranged such that, when the new modules are used (i.e.
UAMod=4 and DBEMT Mod=3), then:

– all inputs given to AeroDyn, i.e. uAD(:), are converted to inputs for BEMT for all times,
i.e. uBT(:) (in the current implementation inputs are interpolated at t and t + dt but
not at all utimes)

– the routine BEMT UpdateStates CCSD is used to integrate the states.

The UpdateStates routine of AeroDyn is illustrated in Figure 6.
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AD_UpdateStates

 xAD(t+dt)

AD_CalcOutput

yAD : Twr, Bld loads  

yBT: Cx,dyn, Cy,dyn 

yBT: Cl,dyn, Cd,dyn, Cm,dyn

yBT: α ,Vrel, Vac ,Re,  ϕ

yBT: a, a', χ

uBT:   r, Vx,Vy, θp, χ0, Ū, ψ  

xdBT:  xdUA

xBT:  xDB  ,  xUA   

zBT:  ϕ    

p:  c, B, ν, AF

BEMT_CalcOutput

SetOutputsFromBEMT

ADTwr_CalcOutput

BEMT_UpdateStates

xdBT:  xdUA

xBT:  xDB,  xUA  

zBT:  ϕ    

States at t+dt:

uBT(2):   r, Vx,Vy, θp

uBT(1):   r, Vx,Vy, θp, χ0, Ū, ψ  

xdBT:  xdUA

xBT:  xDB,  xUA   

zBT:  ϕ    

p:  c, B, ν, AF

xAD: xBT, , xUA

uAD: Twr, Bld, Hub motions
           Twr, Bld in�lows

SetInputs
uAD(:) uBT(:)

xdAD: xdBT

zAD: zBT

Bld accelerations

yAD: Blade LoadsyBT: Cx,dyn, Cy,dyn, Cm,dyn

p:  c, B, ρ

yBT: Vrel

xAD: xBT

uAD: Twr, Bld, Hub motions
           Twr, Bld in�lows

xdAD: xdBT

zAD: zBT

SetInputs
uAD(t) uBT(t)

yAD: Twr Loads

if UA new and DBEMT new

else

BEMT_UpdateStates_CCSD

uBT(:):   r, Vx,Vy, θp, χ0, Ū, ψ  

xBT:  xDB,  xUA   

p:  c, B, ν, AF xBT:  xDB,  xUA  

States at t+dt:

, ω, Velast 

, ω, Velast 

(              )

Figure 6: Scheme of AeroDyn states and output routines
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5 AeroDyn integration and linearization capability

A “total derivative” approach is used for the linearization, and the constraint is assumed to be
eliminated within the X and Y routines, such that the constraint state z is intrinsically handled
in the linearization and doesn’t result in associated Jacobians.

5.1 Conditions for time domain or linearization

No restrictions are present for time domain simulations, any combinations of inputs are allowed.(combinations
of DBEMT Mod, UAMod and AFAeroMod). For the linearization to be allowed, the following options
are required: DBEMT Mod = 3 if WakeMod = 2, UAMod = 4 if AFAeroMod=2

5.2 Changes to CalcOutput

The BEMT CalcOutput routine needs to be adapted such that the constraint equation is solved
for each time the routine is called when both new modules are used (i.e. when UAMod=4 and
DBEMT Mod=3, either for linearization or time domain simulation). This condition can be gath-
ered with the condition already present when the module is not initialized, which also triggers a
computation of the constraint.

5.3 Changes to the Jacobain routines

The Jacobians routines of AeroDyn need to be modified to use the CCSD routine when both new
modules are used. The partial derivatives are evaluated using finite differences, in harmony with
the methods already in place. The changes to the different Jacobian routines are listed below9.

JacobianPInput

• ∂X
∂u : this is now to be computed by perturbations of the inputs (similar to what is done for
Y ). The CCSD function of BEMT is called to estimate the changes in the state function X
for changes in inputs.
• ∂Z

∂u : this should not be computed when the new modules are used

• ∂Y
∂u : no changes required, z should be ignored and recomputed by AD CalcOutput.

JacobianPContState

• ∂X
∂x : computed by finite differences, perturbation of the states and evaluation of the CCSD
routine.
• ∂Z

∂x : not computed

• ∂Y
∂x : computed by finite differences, perturbation of the states and evaluation of the output
routine.

JacobianPConstrState

• ∂X
∂z : not computed when both new modules are used

• ∂Z
∂z : not computed when both new modules are used

• ∂Y
∂z : not computed when both new modules are used

9The changes mentioned refer to the OpenFAST branch and might not reflect the changes already incorporated
in the Envision branch. In particular, the OpenFAST branch still contains partial derivatives associated with the
constraint states.

22



A Flowcharts of BEMT routines

calculate_Inductions_from_BEMT
aqs, a'qs

z: ϕ

u1:   r, Vx,Vy, θp

BEMT_UpdateStates

uBT(2):   r, Vx,Vy, θp

uBT(1):   r, Vx,Vy, θp, χ0, Ū, ψ,  

BEMT_UnCoupledSolve z: ϕ u1:   r, Vx,Vy, θp

if DBEMT

Compute states at t+dt

calculate_Inductions_from_DBEMT

adyn, a'dyn
z: ϕ

u1:   r, Vx,Vy, θp
DBEMT CalcOutput

uDB: vx,qs, vy,qs

vx, vy

ApplySkewedWakeCorrection a, a', χu1:   r, Vx,Vy, ψ, χ0

NOTE: potential unnecessary call to c_i_f_B if DBEMT is None 

NOTE: using a chi local! adyn, a'dyn

UA_UpdateStates
uUA:  α, Vrel

xdBT:  xdUA

aqs, a'qs

uUA:   Vac, ω 

xdUA

xUA

BEMT_CalcOutput

Compute_UA_AirfoilCoefs

UA_CalcOutput

y: Cl,dyn, Cd,dyn, Cm,dyn
xdUA

xUA

Transform_ClCd_CxCy
y: ϕ, Cl,dyn, Cd,dyn y: Cx,dyn, Cy,dyn 

z: ϕ

u1:   r, Vx,Vy, θp

if DBEMT

xDB

x: xDB

xBT:  xDB  ,  xUA   

BEMT_UnCoupledSolve
z: ϕ u2:   r, Vx,Vy, θp

z: ϕ

u2:   r, Vx,Vy, θp
uDB(2)

DBEMT_UpdateStates

if DBEMT

uDB(1) uDB(2)

xDB

zBT:  ϕ    

p:  c, B, ν, AF

a, a'

u:UA:   α ,Vrel, Vac 

vx, vy

adyn, a'dyn

xdBT:  xdUA

xBT:  xDB  ,  xUA   

zBT:  ϕ    

 xDB  (t+dt)

 xdUA  (t+dt)

 xUA  (t+dt)

NOTE: useless call

uDB(1)

u1: Ū ,  Velast

calculate_Inductions_from_BEMT

States at t+dt:

u1:   Vx,Vy Geometry

if DBEMT

UA, 
place 
at the 
end?

Remove 
me?

Could qs 
be passed 

at init?

uBT:   r, Vx,Vy, θp, χ0, Ū, ψ  

xdBT:  xdUA

xBT:  xDB  ,  xUA   

zBT:  ϕ    

p:  c, B, ν, AF

BEMT_UnCoupledSolve y: ϕ u:   r, Vx,Vy, θp

calculate_Inductions_from_BEMT y: aqs, a'qs

y: ϕ

u:   r, Vx,Vy, θp

if DBEMT

if not frozen wake and more logic

calculate_Inductions_from_DBEMT

adyn, a'dyn
y: ϕ

u:   r, Vx,Vy, θp
DBEMT CalcOutput

uDB: vx,qs, vy,qs

vx, vy

NOTE: potential unnecessary call to c_i_f_B if DBEMT is None 

y: aqs, a'qs

xDB

x: xDB

vx, vy

adyn, a'dyn

if DBEMT

if not initialized (or if new modules)

else
y: ϕ  = z: ϕ   and y: aqs, a'qs not set ? 

ApplySkewedWakeCorrection y: a, a', χu:   r, Vx,Vy, ψ, χ0

NOTE: using a chi local! adyn, a'dyn

y: a, a'

y: α ,Vrel, Vac ,Re,  ϕu: Vx,Vy Geometry

y: α ,Vrel, Vac , Re,  ϕ

yBT: Cx,dyn, Cy,dyn 

yBT: Cl,dyn, Cd,dyn, Cm,dyn

yBT: α ,Vrel, Vac ,Re,  ϕ

yBT: a, a', χ

ω ω, Velast 

SIDB

uDB(1)

u1: Ū , Velast

SIDB
aqs, a'qs

u2: Velast

SIDB
aqs, a'qscalculate_Inductions_from_BEMT

Figure 7: Scheme of BEMT update states and output routines
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Transform_ClCd_CxCy
ϕ, Cl, Cd Cx, Cy 

ComputeSteadyAirfoilCoefs
α, Re, AF Cl, Cd, Cm, Cp,min 

BEMTU_InductionWithResidual

p: c, B, ν, AF

a, a'
ϕ, α, Re 

u: r, Vx,Vy

calculate_Inductions_from_BEMT

p:  c, B, ν, AF a, a'

u:   r, Vx,Vy, θp

inductionFactors

p: c, B, AF
a, a'

ϕ, Cx, Cy 

u: r, Vx,Vy

residual

residual

z: ϕ

Figure 8: Scheme of main subroutines used in BEMT
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B Dynamic inflow model

B.1 Model of Øye

Introduction A change in the rotor loading will result in a change in the wake configuration
and the induced velocities. For a change between two loading configurations, it will take time
for the wake to go from one equilibrium state to another. This phenomenon is referred to as the
dynamic inflow or dynamic wake. Using a vorticity formulation, the change of loading will imply a
change of vorticity emitted into the wake. The new value of the vorticity propagates progressively
downstream replacing the old values and hence the induced velocity from this vorticity changes
progressively. The time scales involved in the dynamic wake are thus related to the convection
velocity of the vorticity in the wake. Due to the difference in convection velocity in the wake it is
expected that the time delay towards the tip is shorter than towards the root [4].

Dynamic model of Øye The dynamic model of Øye is presented in the review of Snel and
Schepers [4] and the book of Hansen [5]. The model is written using two first order differential
equations:

W int + τ1
dW int

dt
= W qs + kτ1

dW qs

dt
(42)

W + τ2
dW

dt
= W int (43)

where W is the actual induction at the rotor (at a given blade position and radial position), W qs

is the quasi-steady induction and W int is an intermediate value coupling the quasi-steady and the
actual inductions. The constant k is usually chosen as k = 0.6. The steady solution of the systems
leads to W = W qs. Within an unsteady BEM step, once the values of aqs and a′qs are computed,
the quasi-steady induction vector is determined as

W qs = −aqsVxex + a′qsVyey (44)

while the time constants are modelled as:

τ1 =
1.1

1− 1.3 min(a, 0.5)

R

U0

, τ2 =

[
0.39− 0.26

( r
R

)2
]
τ1 (45)

with a the mean axial induction over the rotor and U0 is the mean free stream velocity over the
rotor10. The limit of 0.5 in Equation 46 is given without justifications in the original report [4].
Further work would be required to investigate this constraint. Equations 43-44 may be rewritten
into a single differential equation as:

W qs + kτ1
dW qs

dt
= W +

(
τ1 + τ2 + τ1

dτ2

dt

)
dW

dt
+ τ1τ2

d2W

dt2
(46)

The above may be rearranged into a non-linear first order system:[
Ẇ

Ẅ

]
=

[
0 I2

− 1
τ1τ2

I2 − 1
τ1τ2

(τ1 + τ2 + τ1τ̇2)I2

] [
W

Ẇ

]
+

1

τ1τ2

[
0 0
1 kτ1

] [
W qs

Ẇ qs

]
(47)

10In Bladed 4.7, U0 is estimated using the annulus at 70% radius. In AeroDyn15, the mean “over the rotor” is
actually computed from the values at each blade node.
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B.2 Implementation 1: Finite difference formulation

The numerical resolution of Equations 43-44 may be done in different ways. The method used in
AeroDyn [6] and the method of Hansen [5] are given below. In both methods, the term Ẇ qs is
approximated using finite differences of the values of the induced velocities at t and t + dt. For
convenience, the RHS of 44 is written H(t):

H(t)
4
= W qs + kτ1

dW qs

dt
(48)

In the method of Hansen, this term is assumed to be constant between two time step, while a linear
variation is assumed in the AeroDyn implementation.

AeroDyn implementation The following approach is followed in AeroDyn (see [6]). First, the
term W qs is assumed to vary linearly between t and t+dt, based on the estimated derivative, then,
the derivative Ẇ qs is evaluated using backward differences as follows:

H(t′) ≈W i
qs + t′

dW qs

dt
+ kτ1

dW qs

dt
≈ A + Bt′, t′ ∈ [0,∆t] (49)

with A = W i
qs + Bkτ1, B =

W i+1
qs −W i

qs

∆t
(50)

Equation 43 is then integrated using Equation 50 as RHS, assuming τ1 constant in the interval,
and using the general integration formula from Equation 96, to give:

W int(t
′) = A + B(t′ − τ1) + C0e

t′/τ1 , with C0 = W i
qs −A + Bτ1 (51)

The term W int(t
′) is then used in the RHS of Equation 44, which is integrated using Equation 96,

assuming τ2 constant in the interval, giving:

W (t′) = C0,2e
−t′/τ2 + A + B(t′ − τ1 − τ2) +

C0

1− kτ
e−t

′/τ1 (52)

with C0,2 = W i
int −A + B(τ1 + τ2)− C0

1− kτ

Equation 53 is expressed at t′ = ∆t to obtain W i+1.

Method of Hansen The numerical resolution of Equations 43-44 is presented as follows by
Hansen. The term involving Ẇqs is evaluated using backward differences, and the W qs is assumed
to be constant in the interval (taking its final value at t+ dt):

H ≈W i+1
qs + kτ1(W i+1

qs −W i
qs)/∆t (53)

where the upper script i and i + 1 represent two successive times separated by ∆t. The term H
is assumed constant, so that Equation 43 and Equation 44 can be successively integrated using
Equation 96, leading:

W i+1
int = H + (W i

int −H)e
−∆t
τ1 , W i+1 = W i+1

int + (W i −W i+1
int )e

−∆t
τ2 (54)
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B.3 Implementation 2: State-space formulation

To allow a full state space formulation and ease the linearization, the following approximations are
made:

• τ̇2 = 0: this approximation seem justified since the models were likely tuned at constant
operating conditions
• Ẇ qs can be approximated using the structural acceleration of the blade (see Equation 41)

and may be further improved by including the contributions from the BEM algorithm.

The state space formulation is then:[
Ẇ

Ẅ

]
=

[
0 I2

− 1
τ1τ2

I2 − 1
τ1τ2

(τ1 + τ2)I2

] [
W

Ẇ

]
+

1

τ1τ2

[
0 0
1 kτ1

] [
W qs

Ẇ qs

]
(55)

C Polar functions

C.1 Basic lift parameters

Two important parameters characterize the lift coefficient: the angle of attach at zero lift noted α0

and the lift slope about this angle noted Cl,α:

Cl,α
4
=

dCl
dα

(α0) (56)

Most airfoils have a linear lift coefficient region around [α0 ;α0 + 5◦]. The lift slope is found as
Cl,α = 2π for an inviscid flat plate. Real airfoils can have slopes value quite different than 2π. The
point where the lift coefficient is maximum is also of relevance. After this point, the lift-coefficient
drops, a phenomenon referred to as stall . Drastic changes of loads may occur depending on the
stall behavior of the airfoil. It is usually desired to design an airfoil such that the maximum lift is
high but the stall behavior is not abrupt.

C.2 Separation function

The separation function fs usually represents the fraction of the lift coefficient Cl distributed
between the inviscid lift coefficient Cl,inv and the fully separated lift coefficient Cl,fs:

Cl(α) = fs Cl,inv(α) + (1− fs) Cl,fs(α) (57)

The function fs is either prescribed (Method 1) or determined from the fully separated polar
(Method 2). The superscript st is used when a function refers to the steady lift coefficient. In the
case of a constant lift coefficient, Cl(α) = c, it is assumed that the flow is fully separated and hence:
Cl,α = 0, Cl,inv = 0, Cl,fs = c and fs = 0.

Method 1: separation function taken as the separation point for a Kichhoff flow Lift
on a flat plate in a potential Kirchhoff flow is given by:

Cstl (α) = Cl,α

[
1 +

√
fsts (α)

2

]2

(α− α0) (58)
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This expression is partially inverted as follows to define the separation function:

if Cl,α = 0, fsts ≡ 0

if Cl,α 6= 0 and α ∈ [α1;α0[∪]α0;α2] , fsts = min


[

2

√
Cstl (α)

Cl,α(α− α0)
− 1

]2

, 1

 (59)

if Cl,α 6= 0 and α = α0 , fsts = 1

else, fsts = 0

Where, as mentioned by Hansen et al. [1], there are two issues with this definition, and essentially,
the implementation should ensure that the function remains between 0 and 1:

• To avoid the function exceeding 1 in the linear region, the term Cl,α(α − α0) needs to be
higher than Cl,α. To achieve this, the slope is defined as the maximum of the slope within
the linear region. Then, any values of fsts above 1 in this region is capped to 1 via the “min”
function.

• Outside of the linear region, the separation function progressively decays. As soon as it
reaches 0 or negative values from both side of α0, this function needs to be bounded to 0.
The values where the separation function reaches 0 on both sides of α0 are noted α1 and α2.

A python source code to compute fsts is given in subsection F.1.

Method 2: Definition in terms of full separated polar Assuming the steady lift coefficient,
the inviscid and fully separated coefficients are known, the separation function is directly obtained
as:

Cstl (α)
4
= fsts Cl,inv(α) + (1− fsts ) Cl,fs(α) ⇒ fsts (α)

4
=

Cstl (α)− Cl,fs(α)

Cl,inv(α)− Cl,fs(α)
(60)

C.3 Fully-separated polar

Method using f sts If the separation function is known, the fully separated polar is directly
obtained from Equation 58:

Cl,fs(α) =
Cstl (α)− Cl,α(α− α0)fsts (α)

1− fsts (α)
when fsts 6= 1, Cl,fs(α) =

Cstl (α)

2
when fsts = 1 (61)

A python source code to compute Cl,fs is given in subsection F.1.

Method from Øye The following model is used e.g. by Øye dynamic stall model [7]. More
details on the implementation is provided in [8].

sfs =
∂Cl
∂α

∣∣∣∣
fs

(
=

1

2
Cl,α

)
(62)
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for α > α0, Cl,fs =


sfs(α− α0) α < α1 −∆α

sfs(α− α0)− sfs
(α−α1+∆α)2

4∆α α < α1 + ∆α
Cl1 α < αmerge

Cl otherwise

(63)

An example of application of this engineering model is shown in Figure 9.
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Figure 9: Illustration of the engineering model to derive a fully-separated polar from steady data.
The original polar is the one of FFA-W3-241 airfoil at Re = 12×106 as given by the DTU 10-MW-
RWT. Parameters for the fully-separated model were αmerge = 35◦, ∆α = 10◦, and sfs = π. The
solid vertical lines mark α0 and αmerge, while the dashed lines mark α1 ±∆α. The linear region of
the steady polar has a slope higher than 2π.

C.4 Inviscid polar

From the 2D viscous tabulated data, α0 and Cl,α can be determined and the inviscid lift coefficient
is obtained as:

Cl,inv = Cl,α sin(α− α0) ≈ Cl,α(α− α0) (64)

D Øye’s dynamic stall model

ḟs(t) = −T−1
f fs(t) + T−1

f f sts (α(t)) (65)

The model of Øye [7] considers trailing edge stall, that is, when the flow separation starts at
the trailing edge and gradually increases upstream for higher angles of attack. The suggested way
to model this is to use an interpolation of aerodynamic data between two extreme cases for which
the flow is either fully separated or entirely inviscid. The differences between these two cases and
the steady data are shown in Figure 9. The lift coefficient is computed as a linear combination of
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the two extremes cases where the linear parameter is function of time to account for the adaptation
of the flow to a configuration or another. This is written as:

Cl(α, t) = fs(t) Cl,inv(α) + (1− fs(t)) Cl,fs(α) (66)

where α is the instantaneous angle of attack, fs is called the separation function which acts as a
relaxation factor, and Cl,inv and Cl,fs are the lift coefficients for inviscid flow without separation
and for fully separated flow respectively. The inviscid lift coefficient is given by Equation 65 and
the fully separated coefficient by Equation 64. The separation function is modelled as a first order
model which tends to the equilibrium (static) value f fs

s :

fs(t+ ∆t) = f st
s (α(t)) +

(
fs(t)− f st

s (α(t))
)
e−

∆t
τ (67)

The equilibrium or static value is obtained from the inviscid and fully separated lift curve as:

f st
s =

Cl − Cl,fs
Cl,inv − Cl,fs

(68)

The application of Equation 67 for fs = f st
s gives then the steady curve.The time constant of the

flow adaptation, τ , is assumed to depend on the chord and the relative wind speed:

τ =
kτ c

Vrel
(69)

where usual values of kτ are 3, 4 or 10 [5]. For k = 1, the time constant provides a representative
time for the flow to go from the leading edge to the trailing edge, hence “replacing” the boundary
layer.

E HGM Beddoes dynamic stall model

The model developed by Hansen et al. is described in details in [1]. The notations from this
document are adopted and the key results are mentioned in this section. The model will be further
referred to as the HGM-Beddoes dynamics stall model, or HGM model, similar to the appellation
used in HAWC2 [9].

The HGM model has been used and extended by Bergami et al. to model trailing-edge flaps [10].

E.1 Overview

An overview of the HGM model is provided in this paragraph. Some notations are introduced
to familiarize the reader with the nomenclature but their definitions will be provided in more
details in the subsequent paragraphs. The HGM model uses 4 states variables x1..x4 to model
the unsteady aerodynamics of an airfoil. The unsteadiness can be attributed to the motion of the
airfoil or changes in inflow conditions. The two first states x1 and x2 have the dimension of an
angle of attack and they capture the time history of the wake vorticity. Any change of the airfoil
circulation indeed results in vorticity being shed in the wake and propagated downstream. In turn,
the vorticity in the wake affects the flow around the airfoil. The time scale characteristic of the
circulation propagation is noted Tu. The values of x1 and x2 contribute to an “effective” angle of
attack αE , which would be obtained if the flow around the airfoil was fully attached and reacted
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instantaneously to the changes in the wake vorticity. The lift coefficient that would be obtained
under these assumptions is noted CpL. The state variable x3 has the dimension of a lift coefficient
and it captures the fact that the pressure around the airfoil needs time to adapt to a change in
effective angle of attack and it is thus lagging compared to the fully-attached lift value. The time
constant for this time-lag is Tp, where the subscript p stands for pressure time-lag. The angle of
attack that would correspond to the quasi-steady lift coefficient x3 is noted αF . The variable x4

captures the dynamics of the boundary layer and represents a dimensionless separation point, a
quantity noted with the variable f . Two “steady-state-stall” configurations of the airfoil will have
two separation point locations. The time scale for the boundary layer to change its separation
point between two stall configurations is noted Tf . The state variable x4 represents the evolution
of the separation from the current state of the boundary layer to the quasi-steady value defined by
fst(αF ).

The model uses six constants to be provided by the user for each airfoil: four constants A1, A2,
b1, b2 characteristic of the propagation of the wake vorticity, the pressure time constant Tp and the
boundary layer time constant Tf .

E.2 State equations

The state equations of the HGM model are given in equations 71-74 with the definitions provided
in equations 75-78. They are linear first order ordinary differential equations. Equations 71-72 are

uncoupled and the coefficients of xi are time dependent via the velocity U(t) (and Tu
4
= c/2U).

Equation 73 is coupled to eqs. 71-72 via CpL, and equation 74 is coupled to eq. 73 via αF . It is
readily seen that the steady state values are x1 → A1α3/4, x2 → A2α3/4, x3 → CpL and x4 → fst(αF )
and they are reached respectively with the time constants Tu/bi, Tp and Tf .

ẋ1 = −T−1
u

[
b1 +

cU̇

2U2

]
x1 + T−1

u b1A1α3/4 (70)

ẋ2 = −T−1
u

[
b2 +

cU̇

2U2

]
x2 + T−1

u b2A2α3/4 (71)

ẋ3 = −T−1
p x3 + T−1

p CpL (72)

ẋ4 = −T−1
f x4 + T−1

f fst(αF ) (73)

with:

Tu(t)
4
=

c

2U(t)
(74)

αE(t)
4
= α3/4(t)(1−A1 −A2) + x1(t) + x2(t) (75)

CpL(t)
4
= Cl,α (αE(t)− α0) + πTu(t)ω(t) (76)

αF (t)
4
=
x3(t)

Cl,α
+ α0 (77)

and where:

• c, Cl,α, α0 are constant airfoil parameters: chord, lift slope and angle of attack of zero lift
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• fst(α) is the separation function, determined from the lift curve CL(α) and which definition
is given in subsection C.2
• A1, A2, b1, b2 are four constants, parameters of the HGM model, characteristic of the propa-

gation of the wake vorticity for this airfoil
• Tf , Tp are two constants, parameters of the HGM model, characteristic of the propagation of

the wake vorticity for this airfoil
• α(t), α3/4(t) and U(t) (with ω and U̇) are time-varying inputs of the HGM model, they

correspond respectively to: the angle of attack, the angle of attack at the 3/4-chord location
and the relative airfoil speed. These values can be derived from the outputs of the structural
model, the inflow model and aerodyn.

The source code for the state derivatives is given in Appendix F.

E.3 Outputs

The unsteady airfoil loads are derived from the states as follows (see [1]):

Cl,dyn(t) = x4(αE − α0)Cl,α + (1− x4)Cl,fs(αE) + πTuω (78)

Cd,dyn(t) = Cd(αE) + (α− αE)Cl,dyn + [Cd(αE)− Cd(α0)] ∆C ′′d,f (79)

Cm,dyn(t) = Cm(αE) + Cl,dyn∆C ′′m,f −
π

2
Tuω (80)

with

∆C ′′d,f =

√
fst(αE)−√x4

2
− fst(αE)− x4

4
, ∆C ′′m,f = 0 (81)

The source code for the output calculation is given in Appendix F.

E.4 Vectorial notations

The state and output equations are written in a vectorial form as:

ẋ = X(x,u, t), y = Y (x,u, t) (82)

with:

x = [x1, x2, x3, x4], u = [α, ω, α3/4, U, U̇ ] (83)

E.5 Jacobian

The linearization of the states and output equations are provided in [1] and repeated in the para-
graph “Block 0” of subsection 2.7.

F Sample source code for the HGM model

F.1 Separation function and fully separated polar

Source code to compute fsts and Cl,fs. Taken from an airfoil library by the author https://

github.com/ebranlard/welib/blob/master/welib/airfoils/Polar.py. The linear slope Cl,α
is be obtained as the maximum slope within the linear region.

32

https://github.com/ebranlard/welib/blob/master/welib/airfoils/Polar.py
https://github.com/ebranlard/welib/blob/master/welib/airfoils/Polar.py


def cl_fully_separated(self):

alpha0 = self.alpha0 ()

cla ,_, = self.cl_linear_slope(method=’max’)

if cla ==0:

cl_fs = self.cl # when f_st ==1

f_st = self.cl*0

else:

cl_ratio = self.cl / ( cla*(self.alpha -alpha0 ))

cl_ratio[ np.where(cl_ratio <0)]=0

f_st = ( 2 *np.sqrt(cl_ratio ) -1)**2

f_st[np.where(f_st <1e-15)] = 0

# Initialize to linear region (in fact only at singularity , where f_st =1)

cl_fs = self.cl/2.0 # when f_st ==1

# Region where f_st <1, merge

I=np.where(f_st <1)

cl_fs[I] =(self.cl[I] - cla* (self.alpha[I]-alpha0 )*f_st[I])/(1. - f_st[I]) # when f_st <1, otherwise not safe

# Outside region

iHig=np.ma.argmin( np.ma.MaskedArray(f_st ,self.alpha <alpha0) );

iLow=np.ma.argmin( np.ma.MaskedArray(f_st ,self.alpha >alpha0) );

cl_fs [0: iLow +1] = self.cl[0: iLow +1]

cl_fs[iHig +1:-1] = self.cl[iHig +1:-1]

#print(iLow ,iHig)

# Ensuring everything is in harmony

cl_inv = cla*(self.alpha - alpha0)

f_st=(self.cl-cl_fs )/(cl_inv -cl_fs);

f_st[np.where(f_st <1e-15)] = 0

# Storing

self.f_st = f_st

self.cl_fs = cl_fs

return cl_fs ,f_st

F.2 State equations

Calculation of state derivatives:

Tu = c/(2*U) # Eq. 23

# Variables derived from states

alphaE = alpha_34 *(1-A1-A2)+ x1 + x2 # Eq. 12

Clp = Cla * (alphaE -alpha0) + np.pi * Tu * alpha_dot # Eq. 13

alphaF = x3/Cla+alpha0 # p. 13

fs_aF = F_st(alphaF) # p. 13

# State equation

xdot = [0]*4

xdot [0] = -1/Tu * (b1 + c * U_dot /(2*U**2)) * x1 + b1 * A1 / Tu * alpha_34

xdot [1] = -1/Tu * (b2 + c * U_dot /(2*U**2)) * x2 + b2 * A2 / Tu * alpha_34

xdot [2] = -1/Tp * x3 + 1/Tp * Clp

xdot [3] = -1/Tf * x4 + 1/Tf * fs_aF

F.3 Outputs

Calculation of outputs from states:

alphaE = alpha_34 *(1-A1 -A2)+ x1 + x2 # Eq. 12

faE = F_st(alphaE)

DeltaCdfpp = (np.sqrt(faE)-np.sqrt(x4))/2 - (faE -x4)/4

#ast_x4 = (fCm(x4) - fCm(alpha0 ))/Cl(x4)

#ast_faE = (fCm(faE) - fCm(alpha0 ))/Cl(faE)

#DeltaCmfpp = (fa_st(x4) - fa_st(faE))
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DeltaCmfpp = 0

# Outputs

Cl_dyn = Cla * (alphaE -alpha0 )*x4 + Cl_fs(alphaE )*(1-x4) + np.pi*Tu*alpha_dot

Cd_dyn = Cd(alphaE) + (alpha -alphaE )* Cl_dyn + (Cd(alphaE)-Cd(alpha0 ))* DeltaCdfpp

Cm_dyn = Cm(alphaE) + Cl_dyn*DeltaCmfpp - np.pi/2*Tu*alpha_dot

G Investigations on the CUA model

G.1 Neglecting the acceleration term U̇

The acceleration term U̇ appears in the original HGM-model in Equation 71 and Equation 72 as:[
bi + cU̇

2U2

]
, with i = 1, 2. One way to evaluate the important of the acceleration term is thus to

compare the term bU̇ = cU̇
2U2 with the value of bi, that are typically b1 ≈ 0.05 and b2 ≈ 0.3.

Using several 10min simulations of the NREL5MW turbine at 7, 13, and 23m/s under normal
operating conditions (with turbulence) and using the radial positions at 17, 43, 70, 98% it was
observed that the term bU̇ did not exceed 0.0013, that is less than 3% of b1. This example case tend

to show that the term U̇ can be omitted in the model. The maximum value is in general obtained
at the root of the blade, where the velocity U is lower and the chord bigger. Neglecting the term
U̇ is thus likely to have more impact at the inboard part.

The inflow time-series of the above-mentioned simulation were used as inputs to the HGM
dynamic stall model to determine the dynamic aerodynamic coefficients as a post-processing step,
with or without the term U̇ . The mean relative error of the lift, drag and moment coefficients along
the span of the blade were below 3.5%, 6% and 2.5% respectively.

H General considerations for the linearization of the chord loads
of an airfoil

Notations are given in Figure 1. The relative wind speed and angle of attack are:

α = atan2
vx
vy
, U =

√
v2
x + v2

y (84)

leading to the following Jacobians with respect to v = [vx, vy]
t

∂U

∂v
=
[vx
U

vy
U

]
,

∂α

∂v
=
[ vy
U2

−vx
U2

]
(85)

The aerodynamic lift, drag and moment and given by:

L =
1

2
ρU2cCl,dyn, D =

1

2
ρU2cCd,dyn, M =

1

2
ρU2c2Cm,dyn (86)

They are projected onto the airfoil coordinate system as: fxfy
mz

 =
1

2
ρcU2

 cosα sinα 0
− sinα cosα 0

0 0 c

 Cl,dyn

Cd,dyn

Cm,dyn

 ⇔ f = MC (87)
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The aerodynamic coefficients C, the transformation matrix M and the outputs loads are linearized
as follows:

M = Mop +
∂M

∂q

∣∣∣∣
op

δq, C = Cop +
∂C

∂q

∣∣∣∣
op

δq, f = fop +
∂f

∂q

∣∣∣∣
op

δq (88)

where q represent the different degrees of freedom (states, inputs). Using f = MC , fop =
MopCop and keeping the first order terms, the Jacobian of the output loads is identified as:

∂f

∂qi

∣∣∣∣
op

=
∂M

∂qi

∣∣∣∣
op

Cop + Mop
∂C

∂qi

∣∣∣∣
op

(89)

The first term can be determined independently of the dynamic stall model, and its expression
is made explicit in the next paragraph. The expression for the second term is a function of the
dynamic stall model.

First term (∂(MCop)) Using vx = U cosα and vy = U sinα, the product MCop is

MCop =
1

2
ρc

 UvxCl,op + UvyCd,op

−UvyCl,op + UvxCd,op

cU2Cm,op

 (90)

Using Equation 86, the Jacobians are obtained as: Since M only depends on vx and vy:

∂M

∂vx

∣∣∣∣
op

Cop =
1

2
ρc

 vx
U (vxCl,op + UvyCd,op) + UCl,op

vx
U (−vyCl,op + UvxCd,op) + UCd,op

2vxcCm,op

 (91)

∂M

∂vy

∣∣∣∣
op

Cop =
1

2
ρc

 vy
U (vxCl,op + UvyCd,op) + UCd,op
vy
U (−vyCl,op + UvxCd,op)− UCl,op

2vycCm,op

 (92)

I Solution of a first order linear differential equation

General equation and its solution A first order linear differential equation is written in its
general form as:

ẋ+ a(t)x(t) = b(t) (93)

Solving first for the homogeneous solution and then using the method of variation of the constant
leads to the following general solution, where t0 is the initial time:

x(t) = e
−

∫ t
t0
a(t′)dt′

[
x(t0) +

∫ t

t0

b(t′) e
∫ t′
t0
a(t′′)dt′′

dt′
]

(94)

Particular cases

• If a is constant:

x(t) = e−a(t−t0)

[
x(t0) +

∫ t

t0

b(t′) ea(t′−t0)dt′
]

(95)
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• If b is also constant:

x(t) = e−a(t−t0)

[
x(t0) +

b

a

[
ea(t−t0) − 1

]]
=
b

a
+

[
x(t0)− b

a

]
e−a(t−t0) (96)

• If a and b are constants, integrating between t and t+ ∆t:

x(t+ ∆t) =
b

a
+

[
x(t)− b

a

]
e−a∆t (97)

Numerical integration

• If a and b are constants, integrating between t and t+ ∆t:

x(t+ ∆t) =
b

a
+

[
x(t)− b

a

]
e−a∆t (98)

This form is for instance recommended by Hansen [5] in the implementation of Oye’s dynamic
stall model described in Appendix D.
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