This document includes a plan for developing modules within the new FAST modularization framework for the example problems from: http://www.nrel.gov/docs/fy13osti/57298.pdf. While these example problems are quite trivial, this document can be used as a “how-to” reference when developing a plan for more sophisticated modules.
As this example demonstrates, a good plan for a module within the new FAST modularization framework will follow the definitions and nomenclature used by: http://www.nrel.gov/docs/fy13osti/57228.pdf, and should clearly:

· State whether the module is intended for loose coupling, tight coupling for time marching, and/or tight coupling for linearization.

· Define the module’s inputs (including initialization), outputs (including initialization), states (continous, discrete, and constraint), and parameters, including units.

· Lay out an example input file for the module.

· Explain the module’s mathemetical formulation, including Jacobians (for tight coupling), in the form required of the framework.

· Prescribe how the module’s inputs are derived from the outputs of other specific modules.

· Identify any potential numerical problems and how to avoid them in the code.

· Lay out the module’s subroutines using pseudocode (as opposed to actual code), including identifying which mathematical formulas are used by which subroutines, and describing the algorithms used in the solution process.

The plan should be written before writing source code and discussed with the tool’s primary owner. When written well, the plan will greatly aid in the programming effort and is a useful jumping off point for writing the module’s user’s guide and theory manual.

Module 1

Description

This module represents System 1 from: http://www.nrel.gov/docs/fy13osti/57298.pdf.
The module is given the module name ModuleName = Module1 and the abbreviated name ModName = Mod1.

The mathematical formulation of this module is a subset of the most general form permitted by the FAST modularization framework in tight coupling, thus, the module is developed to support both loose and tight coupling (tight coupling for both time marching and linearization).
Inputs, Outputs, States, and Parameters
These are the nonlocal variables that must be defined in the module’s Registry.
Initialization Input

None

Normally an input file name would be placed here (among other variables). But in this example, for simplicity, the parameters and initial states are set within the initialization subroutine instead of being read from an input file.
Initialization Output
None
Inputs (
[image: image1.wmf]u

)

[image: image2.wmf]c

f

=
coupling force (N)

Outputs (
[image: image3.wmf]y

)

[image: image4.wmf]q

=
displacement of mass 1 (m)

[image: image5.wmf]q

&

=
velocity of mass 1 (m/s)

States
Continuous States (
[image: image6.wmf]x

)

[image: image7.wmf]q

=
displacement of mass 1 (m)

[image: image8.wmf]q

&

=
velocity of mass 1 (m/s)

Discrete States (
[image: image9.wmf]d

x

)
None
Constraint States (
[image: image10.wmf]z

)
None
Other States (
[image: image11.wmf]OtherState

)
These variables are needed when using a multistep integrator in loose coupling.

[image: image12.wmf]n

=
time-step counter (-)

[image: image13.wmf]0

x

&

=
first time derivative of the continuous states
[image: image14.wmf]x

 at time
[image: image15.wmf]tnt

D

=

 ([
[image: image16.wmf]x

]/s)

[image: image17.wmf]1

x

-

&

=
first time derivative of the continuous states
[image: image18.wmf]x

 at time
[image: image19.wmf](

)

ttn1t

DD

-=-

 ([
[image: image20.wmf]x

]/s)

[image: image21.wmf]2

x

-

&

=
first time derivative of the continuous states
[image: image22.wmf]x

 at time
[image: image23.wmf](

)

t2tn2t

DD

-=-

 ([
[image: image24.wmf]x

]/s)

[image: image25.wmf]3

x

-

&

=
first time derivative of the continuous states
[image: image26.wmf]x

 at time
[image: image27.wmf](

)

t3tn3t

DD

-=-

 ([
[image: image28.wmf]x

]/s)

Parameters (
[image: image29.wmf]p

)

[image: image30.wmf]m

=
mass of mass 1 (kg)

[image: image31.wmf]c

=
damping of dashpot 1 (N/(m/s))

[image: image32.wmf]k

=
stiffness of spring 1 (N/m)

[image: image33.wmf]f

=
external force applied to mass 1 (constant or dependent only on time,
[image: image34.wmf](

)

ft

) (N)

[image: image35.wmf]t

D

=
module time step (increment) (s)

[image: image36.wmf]method

=
integration method {1: RK4, 2: AB4, 3: ABM4} (switch)

Mathematical Formulation
The mathematical formulation of this module is a subset of the most general form permitted by the FAST modularization framework in tight coupling. Because there are no discrete states, the module represents a pure continuous-time system. Because there are no constraint states, the equations of motion form ODEs. The system is naturally linear, so, the equivalent linear state-space system is also identified below.
Continuous-State Functions (
[image: image37.wmf]X

)
The continuous-state equations are
[image: image38.wmf](

)

xXx,u,t

=

&

 with

[image: image39.wmf]c

q

X

kqcqff

m

ìü

ïï

=

--++

íý

ïï

îþ

&

&

, or equivalently,
[image: image40.wmf]0100

Xxu

kc1f

mmmm

éùìüìü

ïïïï

êú

=++

íýíý

êú

--

ïïïï

ëûîþîþ

(1)

To avoid a division-by-zero error, the condition
[image: image41.wmf]m0

¹

 should be checked when it is set at module initialization in Mod1_Init.
Discrete-State Functions (
[image: image42.wmf]d

X

)
None
Constraint-State Functions (
[image: image43.wmf]Z

)
None
Output Functions (
[image: image44.wmf]Y

)
The output equations are
[image: image45.wmf](

)

yYx

=

 with

[image: image46.wmf]q

Y

q

ìü

=

íý

îþ

&

, or equivalently,
[image: image47.wmf]100

Yxu

010

éùìü

=+

íý

êú

ëûîþ

(2)

This module does not have direct feedthrough of input to output.
Jacobians
The absence of discrete and constraint states means that all Jacobians are blank except for the Jacobians identified below. All Jacobians can be calculated analytically (as opposed to numerically through a perturbation technique). Because the system is naturally linear, the Jacobians are independent of the operating point.
Jacobians with respect to Continous States

[image: image48.wmf]01

X

kc

x

mm

éù

¶

êú

=

êú

¶

--

ëû

(3)

[image: image49.wmf]10

Y

01

x

éù

¶

=

êú

¶

ëû

(4)

Jacobians with respect to Inputs

[image: image50.wmf]0

X

1

u

m

ìü

¶

ïï

=

íý

¶

ïï

îþ

(5)

[image: image51.wmf]0

Y

0

u

ìü

¶

=

íý

¶

îþ

(6)

Input-Output Transformation
When system (module) 1 is coupled to system (module) 2, the input to this module exactly equals the output of module 2. The input-output transformation equation for this module is
[image: image52.wmf](

)

(

)

1

0Uu,y

=

 with

[image: image53.wmf](

)

(

)

(

)

112

Uuy

=-

(7)

The Jacobians of the input-output transformation equation for this module are

[image: image54.wmf](

)

1

U

100

u

¶

êú

=

êú

ëû

ëû

¶

%

 and
[image: image55.wmf](

)

1

U

001

y

¶

êú

=-

êú

ëû

ëû

¶

(8)
When system (module) 1 is coupled to system (module) 3, the input to this module exactly equals the output of module 3. The input-output transformation equation for this module is
[image: image56.wmf](

)

(

)

1

0Uu,y

=

 with

[image: image57.wmf](

)

(

)

(

)

113

Uuy

=-

(9)

The Jacobians of the input-output transformation equation for this module are

[image: image58.wmf](

)

1

U

10

u

¶

=

êú

ëû

¶

%

 and
[image: image59.wmf](

)

1

U

001

y

¶

êú

=-

êú

ëû

ëû

¶

(10)
Subroutines
Because the module supports both loose and tight coupling (tight coupling for both time marching and linearization), all of the subroutines in the template are used. The absence of discrete and constraint states means that the Mod1_CalcConstrStateResidual, Mod1_UpdateDiscState, Mod1_JacobianPDiscState, and Mod1_JacobianPConstrState routines are blank.
Mod1_Init
In this example, for simplicity, the parameters and initial states are set within the initialization subroutine instead of being read from an input file.This initialization subroutine is used to:
· Set the parameters,
[image: image60.wmf]p

. The condition
[image: image61.wmf]m0

¹

 is checked to avoid a future division-by-zero error.
· Set an initial guess for the input,
[image: image62.wmf](

)

Guess

u0

.

· Set initial values of the continous states,
[image: image63.wmf](

)

x0

.
· Set the module time step,
[image: image64.wmf]t

D

.
Mod1_End
This end subroutine is used to release memory.
Mod1_UpdateStates
This time-stepping subroutine is used to advance the continuous states from the current time step to the next time step using one of three different integrators: RK4, AB4, and ABM4. Each integration method is documented separately below. The nomenclature used below is as follows:
[image: image65.wmf]t

,
[image: image66.wmf]t

n

t

D

=

, and
[image: image67.wmf](

)

xt

 are some of the input arguments to Mod1_UpdateStates;
[image: image68.wmf](

)

xtt

D

+

 is the output argument from Mod1_UpdateStates;
[image: image69.wmf](

)

X

 represents a CALL to Mod1_CalcContStateDeriv; and
[image: image70.wmf](

)

u

 represents a CALL to Mod1_Input_ExtrapInterp.
RK4 (
[image: image71.wmf]method1

=

)
The RK4 method is an explicit ODE integrator that uses midpoints between time steps.

[image: image72.wmf](

)

(

)

(

)

1

kXxt,ut,t

=

[image: image73.wmf](

)

1

2

tk

tt

kXxt,ut,t

222

D

DD

æö

æö

=+++

ç÷

ç÷

èø

èø

[image: image74.wmf](

)

2

3

tk

tt

kXxt,ut,t

222

D

DD

æö

æö

=+++

ç÷

ç÷

èø

èø

[image: image75.wmf](

)

(

)

(

)

43

kXxttk,utt,tt

DDD

=+++

[image: image76.wmf](

)

(

)

(

)

1234

t

xttxtk2k2kk

6

D

D

+=++++

AB4 (
[image: image77.wmf]method2

=

)
This AB4 method is an explicit multistep ODE integrator that is initialized with 3 steps of RK4.
[image: image78.wmf]OtherState

 is used to store previously saved values. Backing up in time is not supported with multistep methods.

[image: image79.wmf](

)

(

)

n21

IFn2THEN!Initializewith3stepsofRK4

UseRK4

OtherState%nn

OtherState%xk

ELSE!UseAB4forallremainingsteps

IFOtherState%nnTHEN!Incrementpreviouslys

avedvalueswhenthisisanewstep

OtherState%nn

OtherState%

-

£

=

=

<

=

&

&

(

)

32

21

10

xOtherState%x

OtherState%xOtherState%x

OtherState%xOtherState%x

ELSEIFOtherState%nnTHEN!Preventthedriver

codefrombackingupintime

ErrStatErrID_Fatal

ErrMsg'Backingupintimeisnotsupported

--

--

-

=

=

=

>

=

=

&

&&

&&

(

)

(

)

(

)

(

)

(

)

(

)

0

0123

withamultistepmethod'

RETURN

ENDIF

OtherState%xXxt,ut,t

t

xttxt55OtherState%x59OtherState%x37Other

State%x9OtherState%x

24

ENDIF

D

D

=

+=+-+-

&

&&&&

ABM4 (
[image: image80.wmf]method3

=

):

This ABM4 method is a predictor-corrector multistep ODE integrotor that is initialized with 3 steps of RK4 and uses AB4 for the predictor.
[image: image81.wmf]OtherState

 is used to store previously saved values. Backing up in time is not supported with multistep methods.

[image: image82.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

012

UseAB4

IFn2THEN!NowapplytheAM4corrector

xttXxtt,utt,tt

t

xttxt9xtt19OtherState%x5OtherState%xOthe

rState%x

24

ENDIF

DDDD

D

DD

--

>

+=+++

+=+++-+

&

&&&&

Mod1_CalcOutput
This time-stepping subroutine is used to compute the outputs per Eq. (2).

Mod1_CalcContStateDeriv
This time-stepping subroutine is used to compute the first time derivative of the continuous states per Eq. (1).

Mod1_UpdateDiscState
This time-stepping subroutine is blank due to the absence of discrete states.

Mod1_CalcConstrStateResidual
This time-stepping subroutine is blank due to the absence of constraint states.

Mod1_JacobianPContState
This Jacobian subroutine is used to compute the Jacobians of Eqs (3)-(4).

Mod1_JacobianPInput
This Jacobian subroutine is used to compute the Jacobians of Eqs (5)-(6).

Mod1_JacobianPDiscState
This Jacobian subroutine is blank due to the absence of discrete states.

Mod1_JacobianPConstrState
This Jacobian subroutine is blank due to the absence of constraint states.

Module 2
Description

This module represents System 2 from: http://www.nrel.gov/docs/fy13osti/57298.pdf.
The module is given the module name ModuleName = Module2 and the abbreviated name ModName = Mod2.

The mathematical formulation of this module is a subset of the most general form permitted by the FAST modularization framework in tight coupling, thus, the module is developed to support both loose and tight coupling (tight coupling for both time marching and linearization).
Inputs, Outputs, States, and Parameters
These are the nonlocal variables that must be defined in the module’s Registry.

Initialization Input

None

Normally an input file name would be placed here (among other variables). But in this example, for simplicity, the parameters and initial states are set within the initialization subroutine instead of being read from an input file.
Initialization Output
None
Inputs (
[image: image83.wmf]u

)

[image: image84.wmf]I

q

=
displacement of virtual interaction node (m)

[image: image85.wmf]I

q

&

=
velocity of virtual interaction node (m/s)

Outputs (
[image: image86.wmf]y

)

[image: image87.wmf]c

f

=
coupling force (N)

States
Continuous States (
[image: image88.wmf]x

)

[image: image89.wmf]q

=
displacement of mass 2 (m)

[image: image90.wmf]q

&

=
velocity of mass 2 (m/s)

Discrete States (
[image: image91.wmf]d

x

)
None
Constraint States (
[image: image92.wmf]z

)
None
Other States (
[image: image93.wmf]OtherState

)
These variables are needed when using a multistep integrator in loose coupling.

[image: image94.wmf]n

=
time-step counter (-)

[image: image95.wmf]0

x

&

=
first time derivative of the continuous states
[image: image96.wmf]x

 at time
[image: image97.wmf]tnt

D

=

 ([
[image: image98.wmf]x

]/s)

[image: image99.wmf]1

x

-

&

=
first time derivative of the continuous states
[image: image100.wmf]x

 at time
[image: image101.wmf](

)

ttn1t

DD

-=-

 ([
[image: image102.wmf]x

]/s)

[image: image103.wmf]2

x

-

&

=
first time derivative of the continuous states
[image: image104.wmf]x

 at time
[image: image105.wmf](

)

t2tn2t

DD

-=-

 ([
[image: image106.wmf]x

]/s)

[image: image107.wmf]3

x

-

&

=
first time derivative of the continuous states
[image: image108.wmf]x

 at time
[image: image109.wmf](

)

t3tn3t

DD

-=-

 ([
[image: image110.wmf]x

]/s)

Parameters (
[image: image111.wmf]p

)

[image: image112.wmf]m

=
mass of mass 2 (kg)

[image: image113.wmf]c

=
damping of dashpot 2 (N/(m/s))

[image: image114.wmf]k

=
stiffness of spring 2 (N/m)

[image: image115.wmf]f

=
external force applied to mass 2 (constant or dependent only on time,
[image: image116.wmf](

)

ft

) (N)

[image: image117.wmf]c

c

=
damping of coupling dashpot (N/(m/s))

[image: image118.wmf]c

k

=
stiffness of coupling spring (N/m)

[image: image119.wmf]t

D

=
module time step (increment) (s)

[image: image120.wmf]method

=
integration method {1: RK4, 2: AB4, 3: ABM4} (switch)

Mathematical Formulation
The mathematical formulation of this module is a subset of the most general form permitted by the FAST modularization framework in tight coupling. Because there are no discrete states, the module represents a pure continuous-time system. Because there are no constraint states, the equations of motion form ODEs. The system is naturally linear, so, the equivalent linear state-space system is also identified below.
Continuous-State Functions (
[image: image121.wmf]X

)
The continuous-state equations are
[image: image122.wmf](

)

xXx,u,t

=

&

 with

[image: image123.wmf](

)

(

)

cccIcI

q

X

kkqccqkqcqf

m

ìü

ïï

=

-+-++++

íý

ïï

îþ

&

&&

, or equivalently,
[image: image124.wmf]cccc

0100

0

Xxu

kkcckc

f

m

mmmm

éùéù

ìü

ïï

êúêú

=++

++

íý

êúêú

--

ïï

îþ

ëûëû

(11)

To avoid a division-by-zero error, the condition
[image: image125.wmf]m0

¹

 should be checked when it is set at module initialization in Mod2_Init.
Discrete-State Functions (
[image: image126.wmf]d

X

)
None

Constraint-State Functions (
[image: image127.wmf]Z

)
None

Output Functions (
[image: image128.wmf]Y

)
The output equations are
[image: image129.wmf](

)

yYx,u

=

 with

[image: image130.wmf]cccIcI

Ykqcqkqcq

=+--

&&

, or equivalently,
[image: image131.wmf]cccc

Ykcxkcu

=+--

êúêú

ëûëû

(12)

This module has direct feedthrough of input to output.
Jacobians
The absence of discrete and constraint states means that all Jacobians are blank except for the Jacobians identified below. All Jacobians can be calculated analytically (as opposed to numerically through a perturbation technique). Because the system is naturally linear, the Jacobians are independent of the operating point.

Jacobians with respect to Continous States

[image: image132.wmf]cc

01

X

kkcc

x

mm

éù

¶

êú

=

++

êú

¶

--

ëû

(13)

[image: image133.wmf]cc

Y

kc

x

¶

=

êú

ëû

¶

(14)

Jacobians with respect to Inputs

[image: image134.wmf]cc

00

X

kc

u

mm

éù

¶

êú

=

êú

¶

ëû

(15)

[image: image135.wmf]cc

Y

kc

u

¶

=--

êú

ëû

¶

(16)

Input-Output Transformation
The input to this module exactly equals the output of system (module) 1. The input-output transformation equation for this module is
[image: image136.wmf](

)

(

)

2

0Uu,y

=

 with

[image: image137.wmf](

)

(

)

(

)

221

Uuy

=-

(17)

The Jacobians of the input-output transformation equation for this module are

[image: image138.wmf](

)

2

010

U

001

u

êú

ìüéù

¶

=

íý

êú

êú

¶

îþëû

ëû

%

 and
[image: image139.wmf](

)

2

100

U

010

y

êú

-

éùìü

¶

=

íý

êú

êú

-

¶

ëûîþ

ëû

(18)

Subroutines
Because the module supports both loose and tight coupling (tight coupling for both time marching and linearization), all of the subroutines in the template are used. The absence of discrete and constraint states means that the Mod2_CalcConstrStateResidual, Mod2_UpdateDiscState, Mod2_JacobianPDiscState, and Mod2_JacobianPConstrState routines are blank.

Mod2_Init
In this example, for simplicity, the parameters and initial states are set within the initialization subroutine instead of being read from an input file.This initialization subroutine is used to:

· Set the parameters,
[image: image140.wmf]p

. The condition
[image: image141.wmf]m0

¹

 is checked to avoid a future division-by-zero error.
· Set an initial guess for the input,
[image: image142.wmf](

)

Guess

u0

.

· Set initial values of the continous states,
[image: image143.wmf](

)

x0

.

· Set the module time step,
[image: image144.wmf]t

D

.

Mod2_End
This end subroutine is used to release memory.
Mod2_UpdateStates
This time-stepping subroutine is used to advance the continuous states from the current time step to the next time step using one of three different integrators: RK4, AB4, and ABM4. Each integration method is documented separately below. The nomenclature used below is as follows:
[image: image145.wmf]t

,
[image: image146.wmf]t

n

t

D

=

, and
[image: image147.wmf](

)

xt

 are some of the input arguments to Mod2_UpdateStates;
[image: image148.wmf](

)

xtt

D

+

 is the output argument from Mod2_UpdateStates;
[image: image149.wmf](

)

X

 represents a CALL to Mod2_CalcContStateDeriv; and
[image: image150.wmf](

)

u

 represents a CALL to Mod2_Input_ExtrapInterp.
RK4 (
[image: image151.wmf]method1

=

)
The RK4 method is an explicit ODE integrator that uses midpoints between time steps.

[image: image152.wmf](

)

(

)

(

)

1

kXxt,ut,t

=

[image: image153.wmf](

)

1

2

tk

tt

kXxt,ut,t

222

D

DD

æö

æö

=+++

ç÷

ç÷

èø

èø

[image: image154.wmf](

)

2

3

tk

tt

kXxt,ut,t

222

D

DD

æö

æö

=+++

ç÷

ç÷

èø

èø

[image: image155.wmf](

)

(

)

(

)

43

kXxttk,utt,tt

DDD

=+++

[image: image156.wmf](

)

(

)

(

)

1234

t

xttxtk2k2kk

6

D

D

+=++++

AB4 (
[image: image157.wmf]method2

=

)
This AB4 method is an explicit multistep ODE integrator that is initialized with 3 steps of RK4.
[image: image158.wmf]OtherState

 is used to store previously saved values. Backing up in time is not supported with multistep methods.

[image: image159.wmf](

)

(

)

n21

IFn2THEN!Initializewith3stepsofRK4

UseRK4

OtherState%nn

OtherState%xk

ELSE!UseAB4forallremainingsteps

IFOtherState%nnTHEN!Incrementpreviouslys

avedvalueswhenthisisanewstep

OtherState%nn

OtherState%

-

£

=

=

<

=

&

&

(

)

32

21

10

xOtherState%x

OtherState%xOtherState%x

OtherState%xOtherState%x

ELSEIFOtherState%nnTHEN!Preventthedriver

codefrombackingupintime

ErrStatErrID_Fatal

ErrMsg'Backingupintimeisnotsupported

--

--

-

=

=

=

>

=

=

&

&&

&&

(

)

(

)

(

)

(

)

(

)

(

)

0

0123

withamultistepmethod'

RETURN

ENDIF

OtherState%xXxt,ut,t

t

xttxt55OtherState%x59OtherState%x37Other

State%x9OtherState%x

24

ENDIF

D

D

=

+=+-+-

&

&&&&

ABM4 (
[image: image160.wmf]method3

=

):

This ABM4 method is a predictor-corrector multistep ODE integrotor that is initialized with 3 steps of RK4 and uses AB4 for the predictor.
[image: image161.wmf]OtherState

 is used to store previously saved values. Backing up in time is not supported with multistep methods.

[image: image162.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

012

UseAB4

IFn2THEN!NowapplytheAM4corrector

xttXxtt,utt,tt

t

xttxt9xtt19OtherState%x5OtherState%xOthe

rState%x

24

ENDIF

DDDD

D

DD

--

>

+=+++

+=+++-+

&

&&&&

Mod2_CalcOutput
This time-stepping subroutine is used to compute the outputs per Eq. (12).

Mod2_CalcContStateDeriv
This time-stepping subroutine is used to compute the first time derivative of the continuous states per Eq.
(11).

Mod2_UpdateDiscState
This time-stepping subroutine is blank due to the absence of discrete states.

Mod2_CalcConstrStateResidual
This time-stepping subroutine is blank due to the absence of constraint states.

Mod2_JacobianPContState
This Jacobian subroutine is used to compute the Jacobians of Eqs (13)-(14).

Mod2_JacobianPInput
This Jacobian subroutine is used to compute the Jacobians of Eqs (15)-(16).

Mod2_JacobianPDiscState
This Jacobian subroutine is blank due to the absence of discrete states.

Mod2_JacobianPConstrState
This Jacobian subroutine is blank due to the absence of constraint states.

Module 3
Description

This module represents System 3 from: http://www.nrel.gov/docs/fy13osti/57298.pdf.
The module is given the module name ModuleName = Module3 and the abbreviated name ModName = Mod3.

The mathematical formulation of this module is a subset of the most general form permitted by the FAST modularization framework in tight coupling, thus, the module is developed to support both loose and tight coupling (tight coupling for both time marching and linearization).
Inputs, Outputs, States, and Parameters
These are the nonlocal variables that must be defined in the module’s Registry.

Initialization Input

None

Normally an input file name would be placed here (among other variables). But in this example, for simplicity, the parameters and initial states are set within the initialization subroutine instead of being read from an input file.
Initialization Output
None
Inputs (
[image: image163.wmf]u

)

[image: image164.wmf]I

q

=
displacement of virtual interaction node (m)

Outputs (
[image: image165.wmf]y

)

[image: image166.wmf]c

f

=
coupling force (N)

States
Continuous States (
[image: image167.wmf]x

)
None
Discrete States (
[image: image168.wmf]d

x

)
None
Constraint States (
[image: image169.wmf]z

)

[image: image170.wmf]H

=
horizontal tension in the cable (N)

Other States (
[image: image171.wmf]OtherState

)
None
Parameters (
[image: image172.wmf]p

)

[image: image173.wmf]D

=
horizontal span of the cable when
[image: image174.wmf]I

q

 is zero (m)

[image: image175.wmf]L

=
unstretched cable length (m)

[image: image176.wmf]w

=
cable weight per unit length (N/m)

[image: image177.wmf]EA

=
cable cross-section extensional stiffness (N)

[image: image178.wmf]Tol

=
tolerance used in Newton-Raphson iteration and to avoid ill-conditioning of the module equations (N)

[image: image179.wmf]itmax

=
maximum number of iterations used in Newton-Raphson iteration (-)

[image: image180.wmf]t

D

=
module time step (increment) (s)

Mathematical Formulation
The mathematical formulation of this module is a subset of the most general form permitted by the FAST modularization framework in tight coupling. Because there are no discrete states, the module represents a pure continuous-time system. Because there are no continuous states, the equations are algebraic only. The system is naturally nonlinear.
Continuous-State Functions (
[image: image181.wmf]X

)
None

Discrete-State Functions (
[image: image182.wmf]d

X

)
None

Constraint-State Functions (
[image: image183.wmf]Z

)
The constraint-state equation is
[image: image184.wmf](

)

0Zz,u

=

 with

[image: image185.wmf]2222

I

22

HLHwLwLwLwL

ZDqln1ln1

EAw2H4H2H4H

éù

æöæö

êú

=--++++--++

ç÷ç÷

ç÷ç÷

êú

èøèø

ëû

(19)

To avoid division-by-zero errors, the conditions
[image: image186.wmf]w0

¹

 and
[image: image187.wmf]EA0

¹

 should be checked when they are set at module initialization in Mod3_Init. There is no closed-form solution of Eq. (19) for
[image: image188.wmf]H

, so the constraint-state equation must be solved iteratively. To ensure
[image: image189.wmf]Z

0

z

¶

¹

¶

 such that a solution always exists, the condition
[image: image190.wmf]L0

¹

 should also be checked when it is set at module initialization in Mod3_Init. (The Jacobian of the constraint-state function with respect to the constraint state,
[image: image191.wmf]Z

z

¶

¶

, is given in Eq. (21) below.) When
[image: image192.wmf]I

q

 approaches
[image: image193.wmf]D

,
[image: image194.wmf]H

 approaches zero and Eq. (19) becomes ill-conditioned; when
[image: image195.wmf]I

qD

=

, the correct solution is
[image: image196.wmf]H0

=

; otherwise,
[image: image197.wmf]H0

>

. Unless the limiting case of
[image: image198.wmf]I

qD

=

 (
[image: image199.wmf]H0

=

) is explicitly implemented,
[image: image200.wmf]H

 should be kept from equaling zero in the iterative solution process. This can be achieved by replacing
[image: image201.wmf]I

Dq

-

 with
[image: image202.wmf]I

Tol

MAXDq,

w

æö

-

ç÷

èø

 and
[image: image203.wmf]H

 with
[image: image204.wmf](

)

MAXH,Tol

.
Output Functions (
[image: image205.wmf]Y

)
The output equations are
[image: image206.wmf](

)

yYz,u

=

 with

[image: image207.wmf](

)

I

YSGNDqH

=-

(20)

Even though the sign of
[image: image208.wmf]Y

 depends on
[image: image209.wmf]I

q

, the module does not have direct feedthrough of input to output because
[image: image210.wmf]Y

0

u

¶

=

¶

, as given in Eq. (24) below.
Jacobians
The absence of continuous and discrete states means that all Jacobians are blank except for the Jacobians identified below. All Jacobians can be calculated analytically (as opposed to numerically through a perturbation technique). Because the system is naturally nonlinear, the Jacobians depend on the operating point. The Jacobians are implemented such that the Jacobians are accurate even when the constraint state doesn’t satisfy the constraint-state equation exactly (so as to be useful in the iterative solution procedure). Although not all explicitly shown below, the Jacobians are undefined at
[image: image211.wmf]I

qD

=

 (
[image: image212.wmf]H0

=

), but again, this limiting case can be avoided.
Jacobians with respect to Constraint States

[image: image213.wmf]I

22

2

ZDq

ZL

zH

wL

H1

4H

+-

¶

=-

¶

+

(21)

[image: image214.wmf](

)

I

Y

SGNDq

z

¶

=-

¶

(22)
In Eq. (21),
[image: image215.wmf]Z

 on the right-hand side comes from the right-hand side of Eq. (19) and would equal zero if the constraint state satisfies the constraint-state equation exactly. Just like Eq. (19), Eq. (21) becomes ill-conditioned as
[image: image216.wmf]H

 approaches zero, which can be avoided by replacing
[image: image217.wmf]I

Dq

-

 with
[image: image218.wmf]I

Tol

MAXDq,

w

æö

-

ç÷

èø

 and
[image: image219.wmf]H

 with
[image: image220.wmf](

)

MAXH,Tol

. In Eq. (22),
[image: image221.wmf](

)

I

SGNDq

-

 is arbitrarily replaced with unity when
[image: image222.wmf]I

Tol

Dq

w

-<

.
Jacobians with respect to Inputs

[image: image223.wmf](

)

I

Z

SGNDq

u

¶

=-

¶

(23)

[image: image224.wmf]Y

0

u

¶

=

¶

(24)
In Eq. (24),
[image: image225.wmf](

)

I

SGNDq

-

 is arbitrarily replaced with unity when
[image: image226.wmf]I

Tol

Dq

w

-<

.

Input-Output Transformation
The input to this module exactly equals the displacement output of system (module) 1. The input-output transformation equation for this module is
[image: image227.wmf](

)

(

)

3

0Uu,y

=

 with

[image: image228.wmf](

)

(

)

(

)

331

Uu10y

=-

êú

ëû

(25)

The Jacobians of the input-output transformation equation for this module are

[image: image229.wmf](

)

3

U

01

u

¶

=

êú

ëû

¶

%

 and
[image: image230.wmf](

)

3

U

100

y

¶

êú

=-

êú

ëû

ëû

¶

(26)

Subroutines
Because the module supports both loose and tight coupling (tight coupling for both time marching and linearization), all of the subroutines in the template are used. The absence of continuous and discrete states means that the Mod3_CalcContStateDeriv, Mod3_UpdateDiscState, Mod3_JacobianPContState, and Mod3_JacobianPDiscState routines are blank.

Mod3_Init
In this example, for simplicity, the parameters and initial states are set within the initialization subroutine instead of being read from an input file.This initialization subroutine is used to:

· Set the parameters,
[image: image231.wmf]p

. The conditions
[image: image232.wmf]w0

¹

,
[image: image233.wmf]EA0

¹

, and
[image: image234.wmf]L0

¹

 should be checked when they are set to avoid a future division-by-zero error and to ensure that there is always a solution.
· Set an initial guess for the input,
[image: image235.wmf](

)

Guess

u0

.

· Set initial guess of the constraint states,
[image: image236.wmf](

)

Guess

z0

.

· Set the module time step,
[image: image237.wmf]t

D

.

Mod3_End
This end subroutine is used to release memory.
Mod3_UpdateStates
This time-stepping subroutine is used to solve the constraint-state equation for the constraint state using Newton-Raphson iteration, based on the specified convergence tolerance. A fatal error should be set if
[image: image238.wmf]itmax

 is reached before the convergence tolerance is met. The nomenclature used below is as follows:
[image: image239.wmf]t

 and
[image: image240.wmf](

)

zt

 are some of the input arguments to Mod3_UpdateStates;
[image: image241.wmf](

)

ztt

D

+

 is the output argument from Mod3_UpdateStates;
[image: image242.wmf](

)

Z

 represents a CALL to Mod3_CalcConstrStateResidual;
[image: image243.wmf](

)

Z

z

¶

¶

 represents a CALL to Mod3_JacobianPConstrState
; and
[image: image244.wmf](

)

u

 represents a CALL to Mod3_Input_ExtrapInterp.

[image: image245.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

zttzt

DOi1,itmax

Zztt,utt

z

Z

ztt,utt

z

IFzTolEXIT

zttzttz

ENDDO

D

DD

D

DD

D

DDD

+=

=

++

=-

¶

++

¶

<

+=++

Mod3_CalcOutput
This time-stepping subroutine is used to compute the outputs per Eq. (20). Even though there are no potential numerical problems with Eq. (20), to ensure consistency with the remaining routines, the constraint state is kept from equaling zero by arbitrarily replacing
[image: image246.wmf](

)

I

SGNDq

-

 with unity when
[image: image247.wmf]I

Tol

Dq

w

-<

and
[image: image248.wmf]H

 with
[image: image249.wmf](

)

MAXH,Tol

.
Mod3_CalcContStateDeriv
This time-stepping subroutine is blank due to the absence of continuous states.

Mod3_UpdateDiscState
This time-stepping subroutine is blank due to the absence of discrete states.

Mod3_CalcConstrStateResidual
This time-stepping subroutine is used to compute the residual of the constraint-state function per Eq. (19). To avoid numerical problems, the constraint state is kept from equaling zero by replacing
[image: image250.wmf]I

Dq

-

 with
[image: image251.wmf]I

Tol

MAXDq,

w

æö

-

ç÷

èø

 and
[image: image252.wmf]H

 with
[image: image253.wmf](

)

MAXH,Tol

.
Mod3_JacobianPContState
This Jacobian subroutine is blank due to the absence of continuous states.
Mod3_JacobianPInput
This Jacobian subroutine is used to compute the Jacobians of Eqs (23)-(24). In Eq. (24),
[image: image254.wmf](

)

I

SGNDq

-

 is arbitrarily replaced with unity when
[image: image255.wmf]I

Tol

Dq

w

-<

.
Mod3_JacobianPDiscState
This Jacobian subroutine is blank due to the absence of discrete states.

Mod3_JacobianPConstrState
This Jacobian subroutine is used to compute the Jacobians of Eqs (21)-(22). In Eq. (21),
[image: image256.wmf]Z

 represents a call to Mod3_CalcConstrStateResidual, and to avoid numerical problems, the constraint state is kept from equaling zero by replacing
[image: image257.wmf]I

Dq

-

 with
[image: image258.wmf]I

Tol

MAXDq,

w

æö

-

ç÷

èø

 and
[image: image259.wmf]H

 with
[image: image260.wmf](

)

MAXH,Tol

. In Eq. (22),
[image: image261.wmf](

)

I

SGNDq

-

 is arbitrarily replaced with unity when
[image: image262.wmf]I

Tol

Dq

w

-<

.

�This section is not needed until the example includes the Jacobians.

�This section is not needed until the example includes the Jacobians.

�This section is not needed until the example includes the Jacobians.

�This section is not needed until the example includes the Jacobians.

�This section is not needed until the example includes the Jacobians.

�Until the example includes the Jacobians, the logic for calculating dZ/dz() as described in the Mod3_JacobianPConstrState section below can be placed directly within Mod3_UpdateStates.

�This section is not needed until the example includes the Jacobians.

17
1

_1424174759.unknown

_1424176072.unknown

_1424521652.unknown

_1424576577.unknown

_1424630268.unknown

_1425392376.unknown

_1425467397.unknown

_1425467412.unknown

_1425467463.unknown

_1425392889.unknown

_1424633881.unknown

_1424630446.unknown

_1424631372.unknown

_1424633758.unknown

_1424633822.unknown

_1424630491.unknown

_1424630386.unknown

_1424630061.unknown

_1424630171.unknown

_1424576718.unknown

_1424629782.unknown

_1424541133.unknown

_1424541213.unknown

_1424542335.unknown

_1424542359.unknown

_1424541155.unknown

_1424528696.unknown

_1424529042.unknown

_1424541107.unknown

_1424528933.unknown

_1424525931.unknown

_1424526627.unknown

_1424526515.unknown

_1424521820.unknown

_1424522254.unknown

_1424522634.unknown

_1424521689.unknown

_1424513755.unknown

_1424513932.unknown

_1424520352.unknown

_1424521032.unknown

_1424521482.unknown

_1424521491.unknown

_1424520283.unknown

_1424515128.unknown

_1424515149.unknown

_1424514253.unknown

_1424513857.unknown

_1424513892.unknown

_1424513798.unknown

_1424176411.unknown

_1424177694.unknown

_1424177711.unknown

_1424176447.unknown

_1424176083.unknown

_1424175940.unknown

_1424176021.unknown

_1424176038.unknown

_1424175948.unknown

_1424175999.unknown

_1424174946.unknown

_1424175668.unknown

_1424175762.unknown

_1424175615.unknown

_1424174768.unknown

_1423456360.unknown

_1424144985.unknown

_1424174546.unknown

_1424145006.unknown

_1424174535.unknown

_1424144995.unknown

_1423505510.unknown

_1423505558.unknown

_1424075155.unknown

_1424075222.unknown

_1424144510.unknown

_1424144520.unknown

_1424075082.unknown

_1423505547.unknown

_1423505152.unknown

_1423481664.unknown

_1423483780.unknown

_1423502512.unknown

_1423502958.unknown

_1423502995.unknown

_1423505097.unknown

_1423502982.unknown

_1423502594.unknown

_1423501911.unknown

_1423501938.unknown

_1423483873.unknown

_1423483762.unknown

_1423462092.unknown

_1423462132.unknown

_1423480987.unknown

_1423481032.unknown

_1423481010.unknown

_1423479921.unknown

_1423456386.unknown

_1423403168.unknown

_1423417631.unknown

_1423418111.unknown

_1423418144.unknown

_1423418180.unknown

_1423418211.unknown

_1423418232.unknown

_1423418197.unknown

_1423418162.unknown

_1423418128.unknown

_1423418071.unknown

_1423418093.unknown

_1423418061.unknown

_1423404134.unknown

_1423404245.unknown

_1423404282.unknown

_1423417615.unknown

_1423404180.unknown

_1423403182.unknown

_1423403400.unknown

_1423403616.unknown

_1423400562.unknown

_1423401039.unknown

_1423401279.unknown

_1423401350.unknown

_1423401443.unknown

_1423401331.unknown

_1423401248.unknown

_1423400855.unknown

_1423400572.unknown

_1423400733.unknown

_1423400549.unknown

