

[bookmark: _GoBack]Note: and .

Initialization

At time , an input-output solve from Step 3 is performed where and are replaced with and is replaced with .

Time Stepping	Comment by jjonkman: Another approach would be to extrapolate the states along with the inputs, do the input-out solve, then the state update, then the correction(s).

This other approach wouldn’t work well though once MiscVar is split from OtherStates to have states (only for loose coupling) that are not continuous, discrete, or constraint. For example, if OtherStates has logical/binary, or integer states, it would not be possible to extrapolate/interpolate states. (Inputs, outputs, continuous states, discrete states, and constraint states must all be composed of real numbers.)

Data known at :

[footnoteRef:1] [1: may also be saved in if a module uses a multi-step method.]

for all .

Step 1: Extrapolate Inputs

Let (correction counter; represents the prediction) and (input-output-solve iteration counter) and extrapolate all inputs to yield predicted input values at , i.e.,

,

for all .

Step 2: Advance States

Advance the state of all partitions to yield state and constraint values at , i.e.,

,

for all .

If needs for , these can be accessed by using an interpolation of inputs, i.e., (but this is not needed if is explicit). If is explicit for all partitions, the correction will not improve anything (but the prediction is adequate).

If a module has an intrinsic time step less (by an integer multiple) than the global time step, , would be called repeatedly in succession to advance the states to .

Step 3: Input-Output Solve

Option 1: Solve for consistent inputs and outputs, which is required when has direct feedthrough in modules coupled together.

Solve for consistent inputs and outputs based on the states at using a root-finding algorithm, i.e., solve

, or equivalently,

for , which also gives . represents a call to each module’s . For Newton’s method this would be:

.

The Jacobian can be computed directly if all Jacobians are available to the glue code,

,
or numerically,

,

where is a vector of zeros with the th element equal to 1 and is a perturbation of the th input.
Option 2: Solve inputs only based on the current outputs, which is an approach much faster than Option 1 and can be used when the modules coupled together do not have direct feedthrough.

Solve for inputs from current outputs based on the states and current inputs at using a root-finding algorithm, i.e., solve

, or equivalently,

for , which also gives . represents a call to each module’s . This may be trivial to solve.[footnoteRef:2] Otherwise, for Newton’s method this would be, [2: For a trivial , such as , where , this reduces to .]

,

which only requires to be called once per module.

Note: If Options 1 and 2 are used together (some module couplings using Option 1 and some using Option 2), then the modules coupled using Option 2 should be solved first. In this case, should be reset to 0 at the completion of Option 2, before starting Option 1.	Comment by jjonkman: One may also want to do Option 1 first if the modules coupled using Option 2 need accurate forces or accelerations from ElastoDyn; Option 1 would also be called at the end in this case.

Step 4: Correct or Save

If , let for all , , and , perform a correction by repeating Steps 2-3.

If , save all the final variables,

,

for all , which completes solution advancement to time .

To advance to the next step, set and repeat Steps 1-4.

For modules with time steps larger than the coupling step (L = 1 for identical, L = 2 for two times, etc.), the following algorithm is suggested.

Note:
Corrections would be expensive (and may counter the benefit of a larger time step) because they would require N(C+1) calls to _UpdateStates, where N is the number of glue code time steps and C is the number of corrections (C=0 represents a prediction step only). It may be preferable to not correct modules with a time step larger than the glue code time step, which then only requires N/L calls to _UpdateStates. That is, adding corrections requires L*(C+1) times as many calls to _UpdateStates. Incidentally, this is the same number of calls to _UpdateStates that is required with time-step subcycling (where L is the integer number of module steps within the glue code step), but each step of the later is of a smaller time step.
*Option 2 would work poorly for modules with strong direct feedthrough.

1. Extrapolate inputs (likely based on inputs stored at the module’s time step)

2. Advance states

3. Input-Output solve
Option 2: Solve for y_n+L, interpolate to find y_n+1, then solve for u_n+1:

	

Option 1:
Solve for u and y at substeps t_n+1 where t_n < t_n+1 <= t_n+L by only calling CalcOutput at n+L:

4. Correct (go back to 2) or Save

oleObject1.bin

oleObject52.bin

oleObject53.bin

oleObject54.bin

image48.wmf
(

)

(

)

(

)

(

)

,0,0

1

1

max

1

,

,,0

1

1

2

,1,

11

,,0

11

,,,,

,,

1

j

jjjj

d

n

n

jk

jkj

n

n

jkjk

nn

jkj

nn

yYxxzut

DO

IFkkEXIT

U

uUuyt

u

IFuTolEXIT

uuu

kk

ENDDO

yy

+

+

-

+

+

+

++

++

=

=

éù

¶

D=-

êú

¶

êú

ëû

D<

=+D

=+

=

%

oleObject59.bin

oleObject60.bin

image49.wmf
k

oleObject61.bin

image50.wmf
max

jj

<

oleObject62.bin

image2.wmf
max

1

k

³

image51.wmf
(

)

(

)

1,0,

11

jjk

ii

nn

uu

+

++

=

oleObject63.bin

oleObject64.bin

image52.wmf
1

jj

=+

oleObject65.bin

oleObject66.bin

image53.wmf
max

jj

=

oleObject67.bin

image54.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

11

11

11

,

11

,

11

,

,

,

,

j

ii

nn

j

didi

nn

j

ii

nn

jk

ii

nn

jk

ii

nn

xx

xx

zz

yy

uu

++

++

++

++

++

=

=

=

=

=

oleObject68.bin

oleObject2.bin

oleObject69.bin

image55.wmf
1

n

t

+

oleObject70.bin

image56.wmf
1

nn

=+

oleObject71.bin

image57.wmf
(

)

(

)

(

)

(

)

(

)

,

,,...,,...,

iiii

nLnnLnLp

nLnnLnLp

uExtrapInterpttttuuu

+--

+--

=

oleObject72.bin

image58.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,,,,,,,...,,,,,

idiiidiiiiiidii

n

nLnLnLnnnnLnnLpL

xxzUpdateStatesxxzuuutXXZ

++++-+

=

oleObject73.bin

image59.wmf
(

)

,,,,

d

nLnLnLnLnL

nL

yYxxzut

+++++

+

=

image3.wmf
0

t

oleObject74.bin

image60.wmf
(

)

11,

,,,...,,,...,

nnnLnnLpLnLnnLpL

yExtrapInterpttttyyy

+++-++-+

=

oleObject75.bin

image61.wmf
(

)

1

0,,

n

Uuyt

+

=

oleObject76.bin

image62.wmf
(

)

(

)

(

)

1,

1,

1

1

,,,...,,,...,,

,

0,,,,...,,,,,,,...,,

nnLnnLpLnLnnLpL

d

nnLnnLpLnLnLnLnLnnLpL

nL

n

n

ExtrapInterpttttuuu

u

UyUExtrapInterpttttYxxzutyy

t

t

++-++-+

++-+++++-+

+

+

+

æö

ç÷

æö

ç÷

ç÷

==

ç÷

ç÷

ç÷

ç÷

èø

ç÷

èø

oleObject77.bin

oleObject3.bin

image4.wmf
1

n

+

oleObject4.bin

image5.wmf
1

j

n

+

oleObject5.bin

image6.wmf
0

oleObject6.bin

image7.wmf
,0

1

j

n

u

+

oleObject7.bin

image8.wmf
0

Guess

u

oleObject8.bin

image9.wmf
n

t

oleObject9.bin

image10.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

,,,,,,...,

idiiiiii

nnnnnnnp

xxzyuuu

--

oleObject10.bin

image13.wmf
{

}

1,2,...,

iN

Î

oleObject13.bin

image14.wmf
0

j

=

oleObject14.bin

oleObject15.bin

image15.wmf
0

k

=

oleObject16.bin

image16.wmf
(

)

1

1

n

tnt

+

=+D

oleObject17.bin

image17.wmf
(

)

(

)

(

)

(

)

(

)

0,0

11,

11

,,,...,,,...,

iiii

nnnnp

nnnnp

uExtrapInterpttttuuu

+--

+--

=

oleObject18.bin

oleObject19.bin

image18.wmf
1

n

t

+

oleObject20.bin

image19.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,

11111

,,,,,,,...,,,,,

jjjjk

idiiidiiiiiidii

n

nnnnnnnnnp

xxzUpdateStatesxxzuuutXXZ

++++-+

=

oleObject21.bin

oleObject22.bin

image20.wmf
(

)

UpdateStates

oleObject23.bin

image21.wmf
(

)

i

u

oleObject24.bin

image22.wmf
1

nn

ttt

+

££

oleObject25.bin

image23.wmf
(

)

(

)

(

)

(

)

(

)

(

)

,

11,

11

,,,...,,,...,

jk

iiii

nnnp

nnnp

utExtrapInterpttttuuu

+-+

+-+

=

oleObject26.bin

oleObject27.bin

oleObject28.bin

image24.wmf
t

D

oleObject29.bin

oleObject30.bin

oleObject31.bin

image25.wmf
Y

oleObject32.bin

image26.wmf
1

n

t

+

oleObject33.bin

image27.wmf
(

)

,,

1

0,,

jkjk

n

Uuyt

+

=

oleObject34.bin

image28.wmf
(

)

(

)

,,

1

0,,,,,,

j

jkjjjk

d

n

UuYxxzutt

+

=

oleObject35.bin

image29.wmf
,

1

jk

n

u

+

oleObject36.bin

image30.wmf
,

1

jk

n

y

+

oleObject37.bin

oleObject38.bin

image31.wmf
(

)

CalcOutput

oleObject39.bin

image32.wmf
(

)

(

)

(

)

(

)

,,

1

1

max

1

,

,,

1

1

2

,1,

11

,,,,

,,

1

j

jkjjjk

d

n

n

jk

jkjk

n

n

jkjk

nn

DO

yYxxzut

IFkkEXIT

U

uUuyt

u

IFuTolEXIT

uuu

kk

ENDDO

+

+

-

+

+

+

++

=

=

éù

¶

D=-

êú

¶

êú

ëû

D<

=+D

=+

oleObject40.bin

image33.wmf
U

u

¶

¶

oleObject41.bin

image34.wmf
(

)

(

)

(

)

(

)

(

)

(

)

1

1

2

2

00

00

00

N

N

Y

u

Y

UUU

u

uuy

Y

u

éù

¶

êú

¶

êú

êú

¶

¶¶¶

êú

=+

¶

êú

¶¶¶

êú

êú

¶

êú

êú

¶

ëû

L

%

MO

oleObject42.bin

image35.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1,2,,#

,,,,,,,,,,,,

:,

dd

DOiofinputs

UueiuiYxxzueiuittUuYxxzutt

U

i

uui

ENDDO

dd

d

=

++-

¶

=

¶

K

oleObject43.bin

image36.wmf
(

)

ei

oleObject44.bin

image37.wmf
i

oleObject45.bin

image38.wmf
(

)

ui

d

oleObject46.bin

image1.wmf
max

0

j

³

oleObject47.bin

image39.wmf
1

n

t

+

oleObject48.bin

image40.wmf
(

)

,,0

1

0,,

jkj

n

Uuyt

+

=

oleObject49.bin

image41.wmf
(

)

(

)

,,0

1

0,,,,,,

j

jkjjj

d

n

UuYxxzutt

+

=

oleObject50.bin

image42.wmf
,

1

jk

n

u

+

oleObject51.bin

image43.wmf
,,0

11

jkj

nn

yy

++

=

image11.wmf
(

)

(

)

(

)

1

,,...,

iii

nnnm

xxx

--

&&&

oleObject57.bin

image47.wmf
(

)

(

)

,,0

1

1

,,

1

1

1

,,,,

,

j

jkjjj

d

n

n

jkjk

n

n

k

yYxxzut

uUyt

+

+

+

+

=

=

=-

%

oleObject58.bin

oleObject11.bin

image12.wmf
(

)

i

OtherStates

oleObject12.bin

image44.wmf
U

oleObject55.bin

image45.wmf
(

)

,

UuUyt

=+

%

oleObject56.bin

image46.wmf
U

I

u

¶

=

¶

%

