Plan for Adding Wave Stretching to HydroDyn

Introduction
This document outlines the plan to add wave stretching into HydroDyn. Wave stretching is an extension to the strip-theory solution, for both strip-theory-only and hybrid models (the potential-flow solution is unaffected by wave stretching). Wave stretching allows for the wave kinematics and hydrodynamic loads to be computed at all nodes within the fluid domain up to the instantaneous free surface (above SWL in a wave crest and below SWL in a wave trough), unlike models without wave stretching, which compute wave kinematics and loads at nodes between the seabed and SWL regardless of the instantaneous free surface. This plan includes details for adding vertical stretching and extrapolation stretching; Wheeler stretching is intentionally left for future work (not FY16), as the numerical implementation is very different, likely requiring a grid of wave kinematics that can be interpolated into. The extrapolation stretching approach is most consistent with the second-order theory currently implemented within HydroDyn.

Wave stretching applies to the velocity, acceleration and dynamic pressure terms of the wave kinematics; the current velocity; and the hydrodynamic added-mass, fluid-inertia, buoyancy, and viscous-drag terms of the loads (both distributed and lumped). Wave stretching does not affect the marine growth or flooded/filled buoyancy terms of the loads. When wave stretching is disabled, the solution is the same as prior versions of HydroDyn.	Comment by Anonymous: Is there no difference in the implementation for when using 1st vs 2nd order wave kinematics? And, is this compatible with a user-inputted wave time history?	Comment by jjonkman: The only difference in the approach between 1st and 2nd-order is that the wave kinematics are stretched to the total (1st plus 2nd) instantaneous wave elevation, when 2nd-order terms are enabled.

The wave stretching proposed is valid for WaveMod = 5 (user-specified wave elevation), but not WaveMod = 6 (user-specified full wave kinematics).	Comment by jjonkman: We should use this opportunity to add a viscous drag term that’s been missing: distributed axial viscous-drag loads on tapered members. This can be computed as follows:

dF/dz_D = (dF/dz_D from before) + ½*AxCd*rho_f*(2*pi*(R+t_MG)*ABS(dR/dz)/2)*
[k*ABS(k^T*v_rel)*k^T]*v_rel

To add these, AxCd will need to be added to the hydrodynamic coefficient tables (simple, depth-based, and member-based, both with and without marine growth).

The first phase (documented here) will be to compute wave kinematics and loads only at existing hydrodynamic analysis nodes. No attempt will be made to place additional nodes at the instantaneous free surface to “correct” the solution for high accuracy. This will be added in a second phase (not yet documented). Until then, a fine discretization of nodes at the free surface will be required to obtain a “numerically smooth” solution.

Input File Changes
Other than comments, the input file is left unchanged. WaveSTMod = 0 (no wave stretching) is kept as an option and WaveSTMod = 1 and 2 will be enabled. WaveSTMod = 1 is for vertical stretching. WaveSTMod = 2 is for extrapolation stretching. WaveSTMod = 3 (Wheeler stretching) will not yet be supported. WaveSTMod is unused with WaveMod = 0 or 6 or potential-flow-only solutions (NJoints = NMembers = 0)	Comment by jjonkman: Do we prevent joints from existing without members connecting them?…we should. For example, NMembers must be >= 1 if NJoints >=2.

Theory Background

In the following equations, is defined such that it is zero at SWL and positive upwards; the water depth is . (Note: this is different than the HydroDyn input file, whereby is defined relative to MSL, not SWL).	Comment by Anonymous: What is the difference between MSL and SWL? Is this due to the introduction of tidal level?	Comment by jjonkman: Yes, and storm surges. MSL2SWL is an input used within HydroDyn (constant for a given simulation).

Before applying stretching, the wave and current kinematics (only valid for) in HydroDyn are computed as follows:

where the first-order wave terms are[footnoteRef:1][footnoteRef:2][footnoteRef:3]: [1: The definition of the Inverse Discrete Fourier Transform (IDFT) is , with .] [2: is the Discrete Fourier Transform (DFT) of , and includes the amplitudes and phases of each first-order wave component, but need not be defined further in this document.] [3: The second-order wave terms and current need not be defined further in this document.]

with:

Wave Stretching Theory

To calculate stretching, new points where wave kinematics calculations take place must be added to HydroDyn, but no loads are calculated at these points. That is, for each strip-theory node above SWL , a point is added at .

Vertical stretching (WaveSTMod = 1):
Vertical stretching means that wave kinematics in a wave crest (above SWL to the instantaneous free surface) are computed using values at SWL; wave kinematics in a wave trough (below SWL to the instantaneous free surface) are truncated. The updated wave and current kinematics are as follows[footnoteRef:4]:	Comment by Anonymous: zero	Comment by jjonkman: Yes, zero. I said “truncated” instead because the wave kinematics are still initially solved between –h and 0, but the kinematics in the trough are simply ignored. [4: The wave and current kinematics are undefined outside of the fluid domain. For output purposes, undefined values will be reported as zero. Likewise, hydrodynamic loads are not computed outside of the fluid domain, but will be reported as zero for output purposes.]

Extrapolation Stretching (WaveSTMod = 2):
Extrapolation stretching means that wave kinematics in a wave crest (above SWL to the instantaneous free surface) are computed using values at SWL plus a linear extrapolation based on the slope of the first-order wave kinematics at SWL; wave kinematics in a wave trough (below SWL to the instantaneous free surface) are truncated. It is noted that the slope of the second-order wave kinematics is not included in the linear extrapolation, which is consistent with second order theory; effectively, the second-order terms are vertically extrapolated. Likewise, the slope of the current profile is not included in the linear extrapolation because such extrapolation is known to over-predict the current speed in wave crests; effectively, the current terms are vertically extrapolated. The updated wave and current kinematics are as follows:	Comment by Anonymous: set to zero	Comment by Anonymous: So, current uses vertical stretching for both cases.	Comment by jjonkman: Yes, as well as the 2nd-order wave kinematics profile.

where the partial derivatives of the first-order terms are:

with:

Domain for Hydrodynamic Load Calculations:
Section 6.3 from the draft HydroDyn User’s Guide and Theory Manual is replaced as follows:

When WaveSTMod = 0, part of the automated geometry refinement mentioned in the above section deals with splitting of input members into sub-elements such that both of the resulting nodes at the element ends lie within the discrete domains described in the following sections. When WaveSTMod > 0, elements at the instantaneous free surface may be partially submerged.	Comment by jjonkman: This will be fixed when we go to the second phase with nodes that follow the instantaneous free surface.

Distributed Loads
Inertia, Added Mass, Buoyancy

When WaveSTMod = 0 and PropPot = FALSE, these loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth,MSL2SWL], and the element the node is connected to is in the water. When WaveSTMod > 0 and PropPot = FALSE, these loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth,MSL2SWL+], and the element the node is connected to is in the water. When WaveMod = 6, the domain is determined by the use of numeric values and nonnumeric strings in the wave data input files.	Comment by Anonymous: Is this user wave kinematics?	Comment by jjonkman: WaveMod = 6 is the user-specified full wave kinematics, which may or may not be treated as “stretched”.

Viscous Drag

When WaveSTMod = 0, these loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth,MSL2SWL] and the element the node is connected to is in the water. When WaveSTMod > 0, these loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth,MSL2SWL+] and the element the node is connected to is in the water. When WaveMod = 6, the domain is determined by the use of numeric values and nonnumeric strings in the wave data input files.

Filled Buoyancy, Filled Mass Inertia
These loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth, FillFSLoc] and the element the node is connected to is in the filled fluid.

Marine-Growth Weight, Marine-Growth Mass Inertia	Comment by jjonkman: The documentation previously says that MG is only applied up to SWL. However, it should be possible to define the MG zone above SWL, including the weight and mass/inertia terms. This should be allowed in the code and will be unaffected by wave stretching.

Moreover, the documentation previously says that MG is only applied when the element the node is connected to is in the water. However, this should be that MG is only applied when the element the node is connected to is in the marine growth zone.

Moreover, this statement was written differently for WaveMod=6; however, the statement as written here is correct. The code should be fixed if it doesn’t follow this statement.
These loads are generated at a node as long as PropPot = FALSE, the Z-coordinate is in the range [MIN(MGDpth),MAX(MGDpth)], and the element the node is connected to is in the marine growth zone.	Comment by jjonkman: I’m assuming HydroDyn already checks that MIN(MGDpth) >= -WtrDpth? (If not, it should.)

Lumped Loads
Lumped loads at member ends (axial effects) are only calculated at user-specified joints, and not at joints HydroDyn may automatically create as part its solution process (see Section 7.5.2 for differences between the input-file discretization and the simulation discretization). For example, if you want axial effects at a marine-growth boundary, you must explicitly set a joint at that location.

Inertia, Added Mass, Buoyancy

When WaveSTMod = 0 and PropPot = FALSE, these loads are generated at a node as long the Z-coordinate is in the range [–WtrDpth,MSL2SWL]. When WaveSTMod > 0 and PropPot = FALSE, these loads are generated at a node as long the Z-coordinate is in the range [–WtrDpth,MSL2SWL+]. When WaveMod = 6, the domain is determined by the use of numeric values and nonnumeric strings in the wave data input files.

Axial Drag

When WaveSTMod = 0, these loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth,MSL2SWL]. When WaveSTMod > 0, these loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth,MSL2SWL+]. When WaveMod = 6, the domain is determined by the use of numeric values and nonnumeric strings in the wave data input files.

Filled Buoyancy
These loads are generated at a node as long as the Z-coordinate is in the range [–WtrDpth,FillFSLoc]

Outputs:	Comment by jjonkman: We should take this opportunity to add two sets of outputs that are needed: the total hydrodynamic load (both applied and from added mass/inertia) from strip theory at nodes (distributed) and joints (lumped). I would name these as follows:

MαNβFTxi, MαNβFTyi, MαNβFTzi, MαNβMTxi, MαNβMTyi, MαNβMTzi

and

JαFTxi, JαFTyi, JαFTzi, JαMTxi, JαMTyi, JαMTzi

For example:
MαNβFTxi = MαNβFDxi + MαNβFIxi + MαNβFBxi + MαNβFBFxi + MαNβFMGxi + MαNβFAMxi + MαNβFAGxi + MαNβFAFxi

and

JαFTxi = JαFDxi + JαFIxi + JαFBxi + JαFBFxi + JαFAMxi

I’m also not sure the distributed total effective added-mass forces are useful, so, I would remove:

MαNβFAxi, MαNβFAyi, MαNβFAzi
There are no new outputs associated stretching, but nodes/joints may now move in and out of the water; when they are out of the water, the wave kinematic and load outputs should be zeroed. 	Comment by Anonymous: There are a few things suggested here that are outside the scope of the work defined. I suggest we add these at the end of the list to ensure that we can get to everything we need to in time.	Comment by jjonkman: Agreed; I just wanted to identify everything up front.
image1.wmf
Z

oleObject1.bin

image2.wmf
(

)

2

hWtrDpthMSLSWL

=+

oleObject2.bin

oleObject3.bin

image3.wmf
0

hZ

-££

oleObject4.bin

image4.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

122

,,,,,,,,

tXYtXYtXYtXY

hhhh

+-

=++

oleObject5.bin

image5.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

122

,,,,,,,,,,,,

ffffcurrent

vtXYZvtXYZvtXYZvtXYZvZ

+-

=+++

rrrrr

oleObject6.bin

image6.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

122

,,,,,,,,,,,,

ffff

atXYZatXYZatXYZatXYZ

+-

=++

rrrr

oleObject7.bin

image7.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

122

,,,,,,,,,,,,

dyndyndyndyn

ptXYZptXYZptXYZptXYZ

+-

=++

oleObject8.bin

image12.wmf
(

)

(

)

[

]

[

]

{

}

0

1

,,,,

XY

tXYIDFTDFTmFmXY

h

h

=

oleObject13.bin

image13.wmf
(

)

(

)

[

]

[

]

[

]

{

}

0

1

,,,,,,

fXYv

vtXYZIDFTDFTmFmXYFmZ

h

=

r

r

oleObject14.bin

image14.wmf
(

)

(

)

[

]

[

]

[

]

{

}

0

1

,,,,,,

fXYa

atXYZIDFTDFTmFmXYFmZ

h

=

r

r

oleObject15.bin

image15.wmf
(

)

(

)

[

]

[

]

[

]

{

}

0

1

,,,,,,

dynXYp

ptXYZIDFTDFTmFmXYFmZ

h

=

oleObject16.bin

image16.wmf
[

]

(

)

(

)

(

)

,,

mmm

jkXCOSYSIN

XY

FmXYe

wbb

éù

-×+×

ëû

=

oleObject17.bin

image17.wmf
[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,

m

mm

m

m

vmm

m

m

m

m

COSHkZh

COS

SINHkh

COSHkZh

FmZSIN

SINHkh

SINHkZh

j

SINHkh

w

bw

w

w

bw

w

w

w

w

ìü

+

ïï

ïï

ïï

+

ïï

=

íý

ïï

ïï

+

ïï

ïï

îþ

r

oleObject18.bin

image18.wmf
[

]

[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

2

2

,,

mm

mmmm

mm

mm

amvmmmm

mm

mm

mm

mm

COSHkZhCOSHkZh

jCOSjCOSgk

SINHkhCOSHkh

COSHkZhCOSHkZh

FmZjFmZjSINjSINgk

SINHkhCOSHkh

SINHkZhSINHkZh

gk

SINHkhCOSHkh

ww

bwbw

ww

ww

wbwbw

ww

ww

ww

ww

ìüì

++

ïïï

ïïï

ïïï

++

ïï

===

íýí

ïï

ïï

++

ïï

--

ïï

îþ

rr

ü

ï

ï

ï

ïï

ý

ïï

ïï

ïï

ïï

îþ

oleObject19.bin

image19.wmf
[

]

(

)

(

)

(

)

(

)

(

)

,

m

pf

m

COSHkZh

FmZg

COSHkh

w

r

w

+

=

oleObject20.bin

image20.wmf
(

)

,,

XYZ

oleObject21.bin

image21.wmf
(

)

0

Z

>

oleObject22.bin

image22.wmf
(

)

,,0

XY

oleObject23.bin

image23.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,,..

,,,,,,0..0,,,

,,,0..0,,

ff

f

undefinedforZtXYORZh

vtXYZvtXYZforZieforhZMINtXY

vtXYOtherwiseieforZtXY

h

h

h

ì

><-

ï

ï

=£-££

í

ï

££

ï

î

rr

r

oleObject24.bin

image24.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,,..

,,,,,,0..0,,,

,,,0..0,,

ff

f

undefinedforZtXYORZh

atXYZatXYZforZieforhZMINtXY

atXYOtherwiseieforZtXY

h

h

h

ì

><-

ï

ï

=£-££

í

ï

££

ï

î

rr

r

oleObject25.bin

image25.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

,,..

,,,,,,0..0,,,

,,,0..0,,

dyndyn

dyn

undefinedforZtXYORZh

ptXYZptXYZforZieforhZMINtXY

ptXYOtherwiseieforZtXY

h

h

h

ì

><-

ï

ï

=£-££

í

ï

££

ï

î

oleObject26.bin

image26.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

0

,,..

,,,,,,0..0,,,

,,,

,,,0..0,,

ff

f

f

Z

undefinedforZtXYORZh

vtXYZvtXYZforZieforhZMINtXY

vtXYZ

vtXYZOtherwiseieforZtXY

Z

h

h

h

=

ì

ï

ï

><-

ï

ï

=£-££

í

ï

ìü

ï

¶

ïï

+££

íý

ï

¶

ïï

ï

îþ

î

rr

r

r

oleObject27.bin

image27.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

0

,,..

,,,,,,0..0,,,

,,,

,,,0..0,,

ff

f

f

Z

undefinedforZtXYORZh

atXYZatXYZforZieforhZMINtXY

atXYZ

atXYZOtherwiseieforZtXY

Z

h

h

h

=

ì

ï

ï

><-

ï

ï

=£-££

í

ï

ìü

ï

¶

ïï

+££

íý

ï

¶

ïï

ï

îþ

î

rr

r

r

oleObject28.bin

image28.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

0

,,..

,,,,,,0..0,,,

,,,

,,,0..0,,

dyndyn

dyn

dyn

Z

undefinedforZtXYORZh

ptXYZptXYZforZieforhZMINtXY

ptXYZ

ptXYZOtherwiseieforZtXY

Z

h

h

h

=

ì

ï

ï

><-

ï

ï

=£-££

í

ï

ìü

ï

¶

ïï

+££

íý

ï

¶

ïï

ï

îþ

î

oleObject29.bin

image29.wmf
(

)

(

)

[

]

[

]

[

]

0

1

0

0

,,,

,

,,

f

v

XY

Z

Z

vtXYZ

FmZ

IDFTDFTmFmXY

ZZ

h

=

=

ìü

¶

¶

ïï

=

íý

¶¶

ïï

îþ

r

r

oleObject30.bin

image30.wmf
(

)

(

)

[

]

[

]

[

]

0

1

0

0

,,,

,

,,

f

a

XY

Z

Z

atXYZ

FmZ

IDFTDFTmFmXY

ZZ

h

=

=

ìü

¶

¶

ïï

=

íý

¶¶

ïï

îþ

r

r

oleObject31.bin

image31.wmf
(

)

(

)

[

]

[

]

[

]

0

1

0

0

,,,,

,,

dynp

XY

Z

Z

ptXYZFmZ

IDFTDFTmFmXY

ZZ

h

=

=

ìü

¶¶

ïï

=

íý

¶¶

ïï

îþ

oleObject32.bin

image32.wmf
[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

0

0

,

m

mmm

m

mmm

m

v

mmmmmm

m

Z

m

m

mm

m

m

Z

SINHkZh

COSk

SINHkh

COSk

SINHkZh

FmZ

SINkSINk

Z

SINHkh

kg

COSHkZh

j

jk

SINHkh

w

bww

w

bww

w

bwwbww

w

w

w

ww

w

w

=

=

ìü

+

ìü

ïï

ïï

ïï

ïï

ïï

+

¶

ïïïï

==

íýíý

¶

ïïïï

éù

ïïïï

ëû

+

ïïïï

îþ

ïï

îþ

r

oleObject33.bin

image33.wmf
[

]

[

]

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

2

22

2

00

2

0

,,

m

mmm

m

mmm

m

av

mmmmmmm

m

ZZ

m

m

mm

m

Z

SINHkZh

jCOSk

SINHkh

jCOSk

SINHkZh

FmZFmZ

jjSINkjSINk

ZZ

SINHkh

kg

COSHkZh

k

SINHkh

w

bww

w

bww

w

wbwwbww

w

w

w

ww

w

==

=

ìü

+

ïï

ïï

ìü

ïï

ïï

+

¶¶

ïïïï

===

íýíý

¶¶

ïïïï

-

éù

ïïïï

ëû

îþ

+

ïï

-

ïï

îþ

rr

oleObject34.bin

image34.wmf
[

]

(

)

(

)

(

)

(

)

(

)

(

)

2

0

0

,

m

p

fmfm

m

Z

Z

SINHkZh

FmZ

gk

Z

COSHkh

w

rwrw

w

=

=

+

¶

==

¶

oleObject35.bin

image35.wmf
(

)

,,

tXY

h

oleObject36.bin

oleObject37.bin

oleObject38.bin

oleObject39.bin

image8.wmf
(

)

[

]

{

}

[

]

'

'

1

2

1

'

m

N

jt

N

m

xtIDFTDFTmDFTme

N

w

=-+

==

å

oleObject9.bin

image9.wmf
m

m

ww

=×D

oleObject10.bin

image10.wmf
[

]

0

DFTm

h

oleObject11.bin

image11.wmf
(

)

(

)

1

,0,0

t

h

oleObject12.bin

